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Abstract

A emerging trend in space technology is small satellite formation flying. The small satel-

lite technology has opened a new era of satellite engineering by decreasing space mission

cost, without reducing the performance. Advancement in electronic miniaturization,

data compression and data handling, imaging technology and autonomous intelligence

has rocketed the small satellite technology by leaps and bounds. Mission involving for-

mation flying of small satellite are providing economical alternative for one single large

spacecraft missions. The new technologies such as, formation flying algorithms, constel-

lation self-reconfiguration, accurate precision algorithms, developed for small satellites

are often later used on major missions, involving large spacecrafts. Formation flying

mission support diverse application areas, from mission involving distributed monitoring

in space which involves mission like geomagnetic study of earth, solar observatory, deep

space observatories to close coordinated flying mission like remote sensing, Geo-positional

systems etcetera.

The main focus of the work presented in this thesis is to develop a optimal con-

trol based formation flying control strategy for high precision formation flying of small

satellites which have restricted computation and storage capacity. Using the recently

developed model predictive static programming (MPSP), and Generalized MPSP algo-

rithm a suboptimal guidance logic is presented for formation flying of small satellites.

Due to the inherent nature of the problem formulation, MPSP does not require the sys-

tem dynamics to be linearized. The proposed guidance scheme is valid both for high

eccentricity chief satellite orbits as well as large separation distance between chief and

deputy satellites. Moreover, since MPSP poses the desired conditions as a set of ‘hard
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constraints, the final accuracy level achieved is very high. Comparative study with stan-

dard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for

MPSP) and another nonlinear controller, Finite time State Dependent Ricatti Equation

(SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and

with lesser amount of control usage.

Another innovative nonlinear online trajectory optimization technique is presented

in this thesis which utilizes the well-known linear quadratic regulator (LQR) theory and

augmenting it with online trained neural networks, . Two sets of neural networks are

used. One to drive the LQR controller towards the optimal control for the nonlinear

system and other is used to capture the unmodeled dynamics. Both sets of neural net-

works are trained online using ‘Closed form expressions’ and do not require any iterative

process. The overall structure leads to robust optimal control synthesis and works well

despite the presence of unmodeled dynamics. This control strategy is experimented with

formation flying catering to large initial separation, high eccentricity orbits, uncertain

semi-major axis of chief satellite and under influence of external perturbation such as J2

gravitational effects. The online optimized LQR controller successfully drives the deputy

satellite to desired final orbit under influence of uncertainties with very minimum track-

ing errors.
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ẋ Velocity in x direction in Hills Reference frame

y Position state y in Hills Reference frame
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Chapter 1

Introduction

An emerging trend across the globe is to have missions involving many small, distributed

and largely inexpensive satellites flying in formation to achieve a common objective.

Satellite formation flying enables new application areas such as spar antenna arrays for

remote sensing, distributed sensing for solar and extra-terrestrial observatories, inter-

ferometry synthetic aperture radar and many more. Missions involving conventional

large satellites are usually quite expensive to design, fabricate, launch and operate as

they require massive investment on infrastructure and support system. In addition, in

general they require large control forces and moments for their trajectory and attitude

corrections, which has been an important factor for the limited life span of the satellites

as well. Consequently, an emerging trend across the globe is to have missions involving

many small, distributed and largely inexpensive satellites. Since it is feasible to do so,

many space research projects in university laboratories are also focused on the develop-

ment of small to very small satellites (i.e. micro, nano and even pico satellites). Note

that new technologies such as formation flying and reconfiguration algorithms developed

for small satellites can be used on major missions involving large spacecrafts as well

Due to their limited size and weight, small satellites can not achieve many missions on

their own. Hence, there is a strong need to have missions involving multiple small satel-

lites. In view of this, Satellite Formation Flying (SFF) has become popular because of

1



Chapter 1. Introduction 2

the potential to perform coordinated missions enhancing their overall capability substan-

tially. Some applications require distributed systems such as employing constellations

of small satellites optimally configured to achieve global cover. Yet, other space mis-

sions need fairly centralized systems (e.g., remote sensing of wide area, communications

systems etc.), where high precision formation flying with close proximity is a strong re-

quirement. Satellite formation flying enables distributed sensing and spar antenna arrays

for remote sensing, gravitational mapping, solar observatories, interferometry synthetic

aperture radar and many more. In extra-terrestrial applications, SFF enables variable

baseline interferometry and large scale distributed sensors that can probe origin and

structure of stars and galaxies with high precision.

1.1 Small Satellite mission

Over last few decades there has been immense advancement on the miniaturization of

electronics through advances in semiconductor technology. A a result of this there is

ever growing interest in development of small to micro payloads and above all miniature

satellites themselves. Primarily the interest in the smaller and lighter payloads and

satellites in driven by the capital involved in launch and operation of the conventional

large satellites. Currently around 25000$ per kg of payload at liftoff is the launch cost.

Traditional satellites building and launch are budgeted in few million dollars, hence

any on orbit failure or malfunction cost huge capital and are single point failures. Hence

for this reason the conventional satellites are build to be highly reliable using conven-

tional and well proven technology hence leaving very less space for experimentation and

innovation. The satellite realization time is long and hence there is no flexibility in design

of mission, since the objective of the mission is already frozen at the inception of the

satellite payload, layout and design.

Where as the small satellites provide the advantage over the conventional satellites is

there launch cost is reduced tremendously as they fly as “piggy back“ with conventional

prime mission satellites. Small satellites mission duration are restricted to couple of
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months to over a year the material used in building these satellites can be “Conventional

of the shelf“ (COTS) materials unlike in big satellites which need test and proven material

for space usage, hence the satellite realization cost and time is much lower. Besides time

and money involved in the small satellite development, the main motivation in using

the small satellites is opportunity to enable mission that a conventional satellite with

added advantage of on orbit mission objective flexibility, redundancy and multi-point

observation, which a conventional satellite fall short to achieve.

1.2 Small satellite classification on their launch mass

• Mini-Satellite (100− 500kg):Mini-satellites are also termed as small satellites. The

technologies used in building the mini satellite are usually borrowed from the con-

ventional satellites, where as the difference might be in the number of payloads

such as transponders or over all capability and longevity of the life of satellite due

to reduced payload and power generation capability. These satellites are used in

the application of communication, remote sensing, weather monitoring, solar and

geomagnetic observation and many more such application. These satellites are

equipped with chemical/ION thruster for orbit and station keeping activities.

• Micro-Satellites (10− 100kg): Micro-satellite are name coined for satellites be-

tween 10kg to 100kg of mass. However some time micro satellite can be marginally

over 100kg as well. Usually these satellites are used for remote sensing purpose.

They use cold gas thruster or spin stabilization technique.

• Nano-Satellite (1− 10kg) : Nano-satellite are the one classified as (1− 10kg) range.

• Pico-Satellite (0.1− 1kg) : Pico-Satellite or picosat are (0.1− 1kg) range. CUBE-

SAT and Palmsat are few of the examples for picosatellite.

• Femto-Satellite (< 0.1kg): Femto satellites are < 0.1kg satellites. these satellites

are used in mission where array of hundreds of satellite are needed for discrete
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measurement and sparse sensing for mission like observation of sola activity, multi-

point sensing in remote sensing missions. The advents in micro and nanotechonolgy

has made it possible to replicate the functionality of entire satellite on a printed

circuit board. Considerable effort is being made in this direction of developing

femto-satellites, example PCBsat.

1.3 Satellite Formation Flying: Classification

Depending on the configuration, mode of operation etc., SFF can be classified into several

categories. Three most formation flying architectures that are most commonly used are

as follows:

• Trailing/ Leader Follower (Figure 1.1): Trailing formations are one where space-

crafts share same orbit and follow each other on same path at specified distance.

The follower spacecraft will follow a path defined by the leader’s position. A fol-

lower spacecraft may have the ability to operate without the intervention of the

leader, controlling and maintaining a desired relative position. Generally leader-

follower architecture has generally been implemented whereby the leader satellite

follows a natural orbit trajectory, and controllers on-board the follower spacecraft

to maintain the formation based on relative position measurements. The nature of

the communications between spacecraft is dependent on formation control hierar-

chy. For most applications, the transmitted data would be in the form of guidance

functions from the leader to the follower spacecraft, for example, desired relative

orbit trajectories and relative position measurements.

• Constellation: (Figure 1.2) Regularly spaced satellites with separation on a global

scale. Constellation normally consists of set of satellites in organized orbital plane

that cover entire earth. Note that the global positioning system (GPS) is the most

prominent example of constellation flying.

• Cluster:(Figure 1.3) Group of satellites are located in formation close to each other
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Figure 1.1: Pictorial representation of Trailing formation [37]

Figure 1.2: Pictorial representation of Constellation formation [37]
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Figure 1.3: Pictorial representation of Cluster formation [13]

and are placed in orbits such that they remain in cluster. A ’Cluster’ includes

any group of two or more spacecraft whose cooperation and knowledge of relative

position is essential for completion of the mission. The term generally implies a level

of spacecraft inter-dependency, but does not imply that precision formation keeping

is required. While a cluster is not a constellation formation, it is not possible to

specify an upper limit to spacecraft separation distance for this definition, although

a cluster would usually operate in a closer formation than a constellation. For a

cluster formation (of more than two spacecraft), the followers may require little

on board processing capability, but sufficient to obey the commands of the master

spacecraft.

1.4 Satellite Formation Flying Control Approaches

Formation flying can be achieved by two different approaches:

• Ground Based Control: In Ground based control, satellite orbital parameters and

current conditions are first communicated to ground based stations. These are then

utilized in doing necessary computations and finally each satellite in formation
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is controlled through ground control center by transmitting back the necessary

commands to the orbiting satellites to put the satellites into appropriate position

in formation. However, this approach is adequate for formation with separation

between spacecrafts is relatively large (e.g. of order of few kilometers) and more

or less restricted only to those missions that do not require dynamic adjustment of

formation orbits

• Autonomous Control: In Autonomous flying the orbital parameters and current

conditions are shared between spacecrafts. Next, the necessary computations are

done onboard the satellites to generate the necessary commands of various satel-

lites in formation. Note that autonomous formation flying algorithms can be imple-

mented either in ’centralized’ and ’de-centralized’ control architectures (see Figure

1.4).

– : Centralized Control : In centralized architecture, a central node does all the

necessary computations and transmits the necessary control actions to the

other nodes.

– De-Centralized Control : On the other hand, in de-centralized architecture,

each satellite processes the available information and determines its own con-

trol actions. Looking from a small satellite mission point of view, the decen-

tralized architecture is more appealing in general as the onboard processing

power of each satellites is limited.

– Distributed Control: A Local Control solution should use model of neighbor-

ing satellites in order to compute the control strategy, to form a new formation

or to maintain the formation flying, with respect to its neighboring systems.

In ideal case satellite should perform computation to solve the complete non-

linear local problem and thereby collectively develop a globally stabilizing

distributed controller with good performance from local controllers.

The constructed distributed controllers are stabilizing and are dependent on

local controller tuning parameters of cost function. (Details are included in
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numerical results discussion section). This design philosophy leads to a con-

troller for finite number of dynamically identical coupled systems, where local

tuning parameters can be chosen to achieve a desirable global performance.

This design approach has following advantages

∗ Global controller is asymptotic stable.

∗ Basic design is simple dealing with one controller (SDRE/MPSP) at a

time to compose global distributed controller for given identical coupled

dynamical systems.

∗ Solution scheme requires solution of low dimensional problem (Charac-

terized by number of neighboring satellites considered in formation. For

our study only one deputy satellite is considered in formation with a

chief satellite. The idea of single satellite in formation is more near to

practical application in many scenarios. In sparsely placed formation like

constellation flight, the separation is large and hence only two body prob-

lem suffices the required design constraints) compared to full centralized

problem(n-body problem) which renders itself quite complex to be solved

on small-spacecrafts onboard.

∗ As global controller in constructed from collection of many single local

controllers, the design approach is modular. Adding or removing satellite

from the formation does not require change in controller design, as long

as maximum number of neighbors does not increase.

The distributed controller requires minimal communication link between satel-

lites for their relative position update, unlike in centralized control, the com-

munication channel requirement is heavy as the control to be actuated in

deputy craft and relative position information is updated from chief satellite.

The distributed controller proposed in this document is of modular nature.

Addition or Loss of any single satellite (which is common scenario in small
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Figure 1.4: Pictorial representation of Centralized, De-centralized and Distributed com-
puting in SFF [38]
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satellite formation flying) can be accommodated easily which ensures the mis-

sion flexibility. Onboard computation, power requirement and inter satellite

communication needs are not high which is more suited for small spacecraft

which have limitation on power generation and large payload carrying capa-

bilities

1.5 Advantages of the Satellite formation Flying

Some of the important advantages of formation flying of satellites can be summarized

as follows:

• Higher redundancy across the formation and improved fault tolerance;

• On-orbit reconfiguration within the formations offers multi-mission capability by

integrating new technology during mission and design flexibility

• Mission improvements through the ability to view objects from multiple angles or

at multiple times;

• Lower individual launch mass and smaller spacecraft volume translates into a re-

duced launch cost and an increased launch flexibility;

• Minimal financial lost in case of failure

1.6 Organization of the Report

Here, a brief outline of the report is given, which highlights the contribution of each

chapter.

In Chapter 2, A review of the existing literature is presented. This chapter describes

the literature addressing both situations of “what have been done” and “what have to

do”. Particularly, the present scenario of the literature along with the related work (to

our problem), is discussed.
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In Chapter 3, A brief discussion on orbital dynamics is introduced in this chapter,

related orbital dynamics terminologies and definition are presented. Equation on motion

of two body problem and relative motion in ECI frame and non inertial Hills frame

is introduced. Linearization technique under special assumption of equation of motion

of relative satellite dynamics is presented. This chapter concludes by introducing the

details of perturbation forces on satellite and giving details on mathematical approach

to J2 modeling.

In Chapter 4, Infinite time LQR controller for satellite formation flying is discussed.

The linear plant model introduced in previous chapter is used to synthesize the linear

controller. Simulation results are discussed to elaborate the effectiveness of LQR con-

troller for circular and small ρ formation problem.

In Chapter 5, A state Dependent Ricatti Equation solution to nonlinear model is

discussed. Two State Dependent Coefficient (SDC) formulation of the nonlinear plant

model is discussed. A comparative study is done of SDRE solution in infinite and finite

time domain solution with two distinct SDC models.

Chapter 6 A Suboptimal guidance logic is presented for satellite formation flying

problem using a MPSP algorithm. A comparative study is presented of the simulation

results of MPSP and SDRE control techniques.

Chapter 7 Another suboptimal guidance logic is presented for satellite formation

flying problem using a G-MPSP algorithm. A comparative study is presented of the

simulation results of G-MPSP and SDRE control techniques.

Chapter 8 This chapter discusses a novel robust controller using LQR base line

controller is presented. This chapter introduces the online optimized controller with

baseline linear LQR controller. The unmodeled dynamics and external perturbation is

considered as state dependent disturbance term. Neural networks are implemented to

approximate the unknown disturbance term and augment the line LQR control to cater

to the nonlinear plant and J2 perturbation.

Chapter 9 This chapter concludes the thesis with presenting a brief summary and

future scope of the work.
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1.7 Summary and Conclusions

This chapter primarily introduces the concept and necessity of Satellite formation flying

mission. A brief discussion on the classification of formation and satellites involved in

this mission are discussed. The various control strategy like ground based , Autonomous

control are discussed. This chapter motivates the control strategy development for forma-

tion flying of satellites and lays foundation for further chapters. Next chapter discusses

the available literature in formation flying and optimal control strategies.



Chapter 2

Literature Survey

One of the key issues in successful small satellite missions is to come up with efficient

and robust guidance logics. In fact, some interesting guidance strategies for reconfigu-

ration and formation flying have been reported in the recent literature. Few to mention

are, in the framework of optimal control Vadali et al. [33] have proposed an optimal

control theory based solution for the problem of formation flying of satellites. H.Ahn

et al. [1] have developed a robust periodic learning control for trajectory keeping in

SFF under time periodic influence of external disturbance such as gravitational pertur-

bation, solar radiation pressure and magnetic field. Park et al. [30] have developed a

state dependent Ricatti equation (SDRE) solution for SFF reconfiguration and station

keeping. Linear quadratic performance study is done on formation flying in presence of

gravity perturbation by Sparks [2]. Lyapunov based adaptive nonlinear control law for

multi-spacecraft formation flying under influence of disturbance force is developed by

V.kapila et.al [6]. Schaub and Alfriend have developed near optimal impulsive feedback

control, to establish specific relative orbit of the spacecraft formation flying using Gauss

variational equation of motion [5]. A optimal control based satellite formation guidance

under atmospheric drag and J2 perturbation is developed by Mishne [4], Minimum fuel,

Multiple Impulse optimal control strategy is developed by Prussing et.al for circle to

circle rendezvous and time vs. fuel optimization for time constraint mission like rescue

and collision avoidance [3]. Irvin [20] has carried out some interesting comparison studies

13
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for various linear and nonlinear control technique applied to SFF such as LQR, SDRE

and sliding mode control.The SDC formulation introduced is valid only for circular chief

satellite orbits. A SDRE based control technique for non-coplanar formation flying with

constant separation distance and in-plane formation with large separation is developed

by Won and Ahn [7], the problem is also extended to elliptical chief satellite orbits.

Optimal control theory is quite widely used and it is a powerful technique for solving

many challenging real-life problems. In fact, the optimal control theory is the driving

force of a large part of the research in aerospace engineering. Optimal control the-

ory based guidance schemes are available for many real-life problems [8–10]. However,

such a formulation often leads to a “two point boundary value problem” (like gradi-

ent method [10], shooting method [8], transcription method [9] etc.), which in turn

lead to large computational requirements that are infeasible to implement in real time.

Moreover, it results in ‘open-loop’ (off-line) solutions. Since open-loop solutions are not

good to account for unwanted inputs (like wind disturbances, for example), the idea

then is to augment it with a “neighboring optimal controller” [12] which is essentially a

Linear Quadratic Regulator (LQR) [25] or State Dependent Ricatti Equation (SDRE)

controller [23] based on the linearized dynamics about the nominal trajectory. Another

real-time optimal control design technique is the “approximate dynamic programming”,

followed by “adaptive critic” approach, where the optimal control problem is solved using

two neural networks [11, 34]. Upon mutual consistent training (which is typically done

off-line), the action network eventually leads to a state feedback solution which in turn

can be used online.

Hence, an important aspect that perhaps needs special attention is the reduction

of computational time, if the computational time can be reduced substantially. That

way the effects of unwanted disturbances can directly be accounted for to compute new

optimal trajectories onboard. In this thesis, the aim is to implement and demonstrate

a computationally efficient optimal steering law for satellite Formation Flying missions

and meeting the terminal constraints in presence of external perturbation.



Chapter 3

Orbital Dynamics and Relative

Satellite Dynamics

Orbital dynamics is primarily concerned with the orbital motion of one or more usually

smaller bodies around the bigger primary body. Most generic case of orbital dynamics

problem is that of the two body problem defined in the Keplerian motion frame work. In

this chapter we briefly introduce the orbital mechanics of two body problem under the

influence of each others gravitation effects. The governing equation of motion is derived

using Newton’s laws of motion and in frame work of three keplerian laws of planetary

motion

3.1 The Two body problem

In this section we briefly elucidate the two body problem and derive the equation of

motion of the two point massesm1 andm2 under influence of the each others gravitational

field. The equation of motion in inertial frame is derived using Newton laws of motion

and keplerian laws of planetary motion [15], [36]

Figure 3.1 shows the two point masses acted upon by the mutual gravitational forces.

R1 and R2 represent the position vector of the center of masses of point mass m1 and

m2 respectively in the inertial frame of reference. Let X1, Y1, Z1 and X2, Y2, Z2 mark

15



Chapter 3. Orbital Dynamics and Relative Satellite Dynamics 16

Figure 3.1: Two body problem in Earth Centered Inertial Frame

the position coordinate of the point mass m1 and m2, hence the radius vector R1 and

R2 can be written as follows 3.1.

R1 = X1̂i+Y1̂j+ Z1k̂

R2 = X2̂i+Y2̂j+ Z2k̂
(3.1)

Let the position vector of m2 with respect to m1 be defined as r = R2 −R1. Using 3.1

relative position vector r can be written as follows.

r = (X2 −X1) î+ (Y2 −Y1) ĵ + (Z2 − Z1) k̂ (3.2)

The point mass m1 is acted upon by the gravitational pull from body m2. This gravita-

tional force of attraction F12 acts along the line joining the center of the two masses r̂.

Where r̂ is the unit vector in the direction of the relative vector r.

r̂ =
r

|r| (3.3)



Chapter 3. Orbital Dynamics and Relative Satellite Dynamics 17

Therefore the force acted on m1 by m2 is given in 3.4 [15]

F12 =
Gm1m2

r2
r̂ (3.4)

Where G is universal Gravitational constant, G = 6.672× 10−11N.m2

kg2

And from Newton’s third law of motion, that is action and reaction are equal and opposite

we can write the expression for gravitational force exerted on m2 by m1 F21 as follows

F21 = −Gm1m2

r2
r̂ (3.5)

From Newton’s second law of motion, we can write the absolute acceleration of the point

mass m1 and m2 with respect to the inertial frame of reference as

∑

F12 = m1R̈1 (3.6)
∑

F12 = F12 + Fc1 + Fp1

Where

• F12: Gravitational attraction between m1 and m2 3.4

• Fc1 : Controlling force.

• Fp1 : Any perturbation forces due to Atmospheric drag, J2 perturbation, Gravi-

tational interaction of third body

Therefore from 3.4 and 3.6 the absolute acceleration can be written as

m1R̈1 =
Gm1m2

r2
r̂+ Fc1 + Fp1 (3.7)

Similarly we can write the above set of equation for point mass m2 as follows.

m2R̈2 = −Gm1m2

r2
r̂+ Fc2 + Fp2 (3.8)
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Diving through out by m1 and m2 in 3.7 and 3.8 respectively the above equations can

be re-written as follows,

R̈1 =
Gm2

r2
r̂+

Fc1

m1

+
Fp1

m1

(3.9)

R̈2 = −Gm1

r2
r̂+

Fc2

m2

+
Fp2

m2

(3.10)

The relative distance between the m1 and m2 is given by r and the relative acceleration

can be written as

r̈ = R̈2 − R̈1 (3.11)

Substituting for R̈2 and R̈1 from 3.9 and 3.10 we get the following expression for relative

acceleration.

r̈ = −Gm1

r2
r̂+

Fc2

m2
+

Fp2

m2
− Gm2

r2
r̂− Fc1

m1

− Fp1

m1

(3.12)

Rewriting the above equation by combining the terms, following equation is obtained.

r̈ = −G(m1 +m2)

r2
r̂+

Fc2

m2

+
Fp2

m2

− Fc1

m1

− Fp1

m1

(3.13)

Considering the point mass m1 as the primary body that is Earth and m2 as secondary

body, satellite orbiting the primary body.

• m1 =MEarth = 5.972× 1024kg

• m2 =MSat ≪ mEarth

Equation 3.13 can be written for Earth, Satellite pair as follows.

r̈ = −G(MEarth +MSat)

r2
r̂+

Fc2

MSat

+
Fp2

MSat

− Fc1

MEarth

− Fp1

MEarth

(3.14)

Since MEarth ≫ MSat we can write MEarth +MSat ≈ MEarth and Fc1

MEarth
that is control

force on Earth is zero and perturbation acceleration Fp1

MEarth
is negligible. Hence the earth

can be considered as the inertial frame of reference for satellite. Using 3.3 Equation 3.14
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can be rewritten as follows,

r̈ = − µ

r3
r+U + ap (3.15)

Where

• µ = GMEarth = 398601km3

s2

• U = Fc2

MSat
(Control Acceleration)

• ap =
Fp2

MSat
(Disturbance acceleration on the satellite)

It is to be noted here that the “Earth centered inertial“ (ECI) reference frame considered

in the above derivation, strictly speaking is not a inertial frame. We have made a

assumption for all practical purpose mass of the satellite is always negligible compared

to that of earth’s mass. Thus the orbital motion of a satellite around the earth is a

restricted two-body problem and earth is assumed to be inertially fixed in space.

The system model developed in this section includes the presence of disturbing force

comprising of the gravitational perturbation due to oblateness of earth( J2 perturbation),

aerodynamic drag, solar radiation pressure and third body gravitational pull on the

satellites. J2 geo-potential perturbation is the dominant source of disturbance compared

to aerodynamic drag solar radiation and third body gravitational effects hence the effect

of other three are neglected in the problem formulation. The mathematical model of the

J2 effects on the satellite are explained in the section 3.3.

3.2 Relative Satellite Dynamics

Relative motion in orbit, that is mission involving formation flying, rendezvous mission

usually involve two satellites orbiting the primary body, one of the orbiting satellite is

know as target vehicle or chief satellite and other deputy or chase vehicle. The chief

satellite is considered to be passive or non-maneuvering and deputy satellite is active

controlled vehicle which can perform maneuvers to bring itself into the desired formation

with respect to the chief satellite. The satellite relative dynamics or satellite formation
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Figure 3.2: Hill’s reference frame for satellite relative motion

flying problem is defined in the scope of two coordinate frames namely Earth Centered

Inertial frame and Hill’s Reference frame [18]. The definition of the two frames is done

the following subsection 3.2.1 and 3.2.2

3.2.1 Earth centered inertial reference frame

Earth Centered Inertial (ECI) [15,36] reference frame has its origin at the center of mass

of earth. X axis is in the direction on the vernal equinox, Z towards the north pole and

Y completes the triad. The ECI frame is shown in the Figure 3.3.

3.2.2 Hill’s Reference Frame

Satellite relative dynamics problem formulation is done in a non-inertial reference

frame centered and moving along with chief satellite which is commonly known as the

Hills reference frame. This reference frame was first described by G.W Hill in his work

on motion of moon about earth [14,18]. (see Figure 3.2 for a description of this reference

frame). The origin of the reference frame is chosen as center of chief satellite. Hill’s
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Figure 3.3: Earth Centered Inertial Reference Frame

coordinate frame X axis (êx) is oriented along radius vector rc of chief satellite mea-

sured from center of the earth, Z (êz) axis points in the direction along orbital angular

momentum vector (h) perpendicular to plane of chief satellite orbit and Y axis (êy) is

cross product of above two and points in the direction of tangent to the reference orbit

and in the velocity vector direction of the chief satellite. [30, 36]

êx =
rc
|rc|

; êz =
h

|h| êy = −êx × êz (3.16)

Hills frame facilitates the motion of the deputy satellite to be described with respect

to a reference point on the moving chief satellite. The motion of the satellite in this

frame will create an relative orbit. However we are primarily interested in the relative

motion as it appears to an observer on the planetary surface, whose position is always

on the straight line connecting the center of the planet to the reference point on the chief

satellite which is origin of the Hill’s reference frame. Apparently the observer point on

the earth is the point of observation on the surface of earth for both the satellites. Lets
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Figure 3.4: Geometric description for Apparent and Relative orbit of deputy satellite in
Hill’s Frame [19]

consider a point we assumed to be situated on the planetary surface that moves with

time such that it is always placed on the line connecting the center of the planet and the

origin of Hills frame. The apparent orbit observed from this point is the motion of the

satellite relative to the reference point. This relative motion is effect of purely a matter

of the line of sight from the viewer to the satellite, however there is no physical meaning

to the apparent orbit [19]. We can visualize it as the trace left by the intersection of the

line of sight as it passes through the yz plane in the Hills coordinate frame, as shown in

Fig. 3.4.

3.2.3 Clohessy-Wiltshire Equation of relative motion of satel-

lite

Using 3.15 and assumption that the chief satellite is passive and non-maneuvering the

equation of motion for chief satellite in inertial frame of reference is given as

r̈c = − µ

r3c
rc + apc (3.17)
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where rc is the radius vector of the chief satellite measured from the center of the earth.

For circular reference orbit rc is constant value and for elliptical orbits the instantaneous

radius vector is calculated as follows [15].

|rc| =
ac
(

1− e2
c

)

(1 + ec cos ν)
; (3.18)

Similarly equation of motion in the inertial frame can be written for deputy satellite.

r̈d = − µ

r3d
rd +U + apd (3.19)

Spatial separation between chief and deputy satellite ρ can be written as, ρ = rd − rc.

Taking double derivative and substituting for r̈c and r̈d from Newton’s law yields the

following expression.

ρ̈ = − µ

(rc + ρ)3
(rc + ρ) +

µ

r3c
rc +U+ ap (3.20)

• rc: Radius vector for chief satellite

• rd = rc + ρ: Radius vector for chief satellite

• apc : Disturbance acceleration on chief satellite

• apd : Disturbance acceleration on deputy satellite

• ap = apd − apc

• ac: Semi-major axis of chief satellite

• ec: Eccentricity of Chief satellite orbit

• ν: True anomaly
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The relative acceleration vector ρ̈ can be written in the non inertial Hill’s reference frame

as follows.

(

d2ρ

dt2

)H

+ 2ωH

I
×
(

dρ

dt

)H

+

(

dωH

I

dt

)

× ρ+ ωH

I
×
(

ωH

I
× ρ

)

− µ

r3c
rc

+
µ

(rd)
3 rd + (U + ap) = 0 (3.21)

where, ωH

I
=
[

0 0 ν̇

]T

denotes angular velocity of Hill’s reference frame relative to

inertial reference frame, ρ =
[

x y z

]T

and U =
[

ax ay az

]T

. where, x, y and z

are three component of relative position vector ρ. The terms ax, ay and az are applied

control accelerations in the three axes x, y and z respectively. The terms ap include

the external perturbation forces such as gravitational perturbation (aJ2), solar radiation

pressure and atmospheric drag (for low altitude remote sensing satellites). Simplifying

3.21 the following expression is arrived at [14]
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The above non-linear equation of motion can be written Ẋ = f(X) + BU form as

follows.
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ẋ2

ẋ3
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where,

X = [ x ẋ y ẏ z ż ]T=
[

x1 x2 x3 x4 x5 x6

]T

(3.24)

µ = GM= 398601 km3/s2 is gravitational parameter, where G is universal Gravitational

constant and M is mass of earth, ν is the true anomaly and

γ = |~rc + ~ρ|3 =
(

(rc + x)2 + y2 + z2
) 3

2

Angular velocity of co-moving reference frame (ν̇) [15]

ν̇ =

√

µa (1− e2)

r2c
(3.25)

Angular acceleration of co-moving reference frame (ν̈) [15]

ν̈ =
−2µe(1 + e cos ν)3 sin ν

a3(1− e2)3
(3.26)

3.2.4 Hill’s Equation : Linearized Clohessy Wiltshire Equation

Hills Equation are linearized form of Clohessy-Wiltshire equation of relative motion of

satellite in the Hill’s frame of reference [18]. The Linearization of the equations 3.22 is

done under following assumptions.

• Circular reference orbit (Chief satellite orbit around earth).

ν̈ = 0 and mean anomaly for circular orbit ω = ν̇ =
√

µ
r3c

• Radial separation between chief and deputy satellite (ρ) is very small compared to

radius vector rc of the chief satellite (ρ≪ rc)

Using the definition of γ and first assumption the Clohessy-Wiltshire equation 3.22 can

be rewritten as follows [20].

ẍ− 2ωẏ − ω2(rc + x)









1− r3c
(

(rc + x)2 + y2 + z2
) 3

2









− ax = 0
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ÿ + 2ωẋ− ω2y









1− r3c
(

(rc + x)2 + y2 + z2
)

3

2









− ay = 0 (3.27)

z̈ + ω2z









r3c
(

(rc + x)2 + y2 + z2
) 3

2









− az = 0

The nonlinear term in the above equations can be written as

σz =
r3c

(

(rc + x)2 + y2 + z2
)

3

2

σy = 1− σz (3.28)

σx =
(

rc
x
+ 1

)

σy

γ =
(

(rc + x)2 + y2 + z2
) 3

2 =
(

r2c + 2rcx+ x2 + y2 + z2
) 3

2 (3.29)

Rewriting the above equation by factoring out the common rc term, the following equa-

tion is obtained.

γ = r3c

(

1 +
2x

rc
+
x2

r2c
+
y2

r2c
+
z2

r2c

) 3

2

(3.30)

Using binomial expansion the above term can be written in the power series form as

follows,

γ = r3c

(

1 +
3

2

(

2x

rc
+
x2

r2c
+
y2

r2c
+
z2

r2c

)

+ . . .+HOT

)

(3.31)

Neglecting higher order terms in the binomial expansion and using second assumption

which states (ρ≪ rc) and hence it can be inferred x, y and z are very small compared

to radius of the reference orbit, hence the following ratios are approximated to zero.

x2

r2c
≈ y2

r2c
≈ z2

r2c
≈ 0

With above simplification the nonlinear term γ can be written as follows.

γ = r3c

(

rc + 3x

rc

)

(3.32)
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Substituting 3.32 in 3.27 and carrying out the further algebraic simplification the follow-

ing linearized equation of motion of relative dynamics is obtained.

ẍ− 2ωẏ −
[

ω2(rc + x)3x

(rc + 3x)

]

− ax = 0

ÿ + 2ωẋ−
[

3ω2yx

(rc + 3x)

]

− ay = 0 (3.33)

z̈ +

[

ω2zrc
(rc + 3x)

]

− az = 0

Further with following approximations

rc + 3x ≈ rc

rc + x ≈ rc (3.34)

yx

(rc + 3x)
≈ 0

The final linearized form of Clohessy-Wiltshire equation of motion can be written as

follows.

ẍ = 2ωẏ + 3ω2x+ ax

ÿ = −2ωẋ+ ay (3.35)

z̈ = −ω2z + az

Writing in the state space form, Ẋ = AX+BU and defining the state vector as follows

X = [ x ẋ y ẏ z ż ]T=
[

x1 x2 x3 x4 x5 x6

]T

(3.36)
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we get
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U (3.37)

This linear form of the equation of motion is used in Linear Quadratic tracking controller

which is explained in the following chapters.

3.3 J2 Perturbation model

Earth’s equatorial radius is 21 km larger than polar radius this flattening of the poles

is known as oblateness of the earth [15]. This lack of symmetry causes force of gravity

on the orbiting satellites not to pass through the center of the earth. Oblateness causes

the variation in gravitational pull with angular distance (latitude) of the orbiting body.

This effect is known as zonal variation, the dimensionless quantity which quantifies the

effects of oblateness on orbit is called J2(Second zonal Harmonics).

Since gravitational force is a conservative force, it can be derived from the gradient of

the scalar potential function. Using equation 3.15 for case of zero control on the satellite

we can write the equation of motion as follows.

r̈ = − µ

r3
r+ ap (3.38)

r is measured in the ECI frame, that is r = Xî+Yĵ+Zk̂ and r =
√
X2 + Y 2 + Z2 Using

the definition of r and r and rewriting the above equation we get the gravitational force
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in the inertial frame component wise as follows.

r̈ =

(

− µX√
X2 +Y2 + Z2

+ aJ2X

)

î+

(

− µY√
X2 +Y2 + Z2

+ aJ2Y

)

ĵ (3.39)

+

(

− µZ√
X2 + Y 2 + Z2

+ aJ2Z

)

k̂ (3.40)

It is to be note here that selection of the function as follows,

(

µ

r
+Gp

)

(3.41)

qualifies as the potential function whose gradient in all three direction are equivalent to

the 3.40 component wise.

∂

∂X

(

µ

r
+Gp

)

=

(

− µX√
X2 + Y 2 + Z2

+ aJ2X

)

(3.42)

∂

∂Y

(

µ

r
+Gp

)

=

(

− µY√
X2 + Y 2 + Z2

+ aJ2Y

)

(3.43)

∂

∂Z

(

µ

r
+Gp

)

=

(

− µZ√
X2 + Y 2 + Z2

+ aJ2Z

)

(3.44)

The term Gp is gravitational potential function expressed as infinite sum series derived

from oblate earth model [20]

Gp = −µ
r

{

∞
∑

n=2

[

(

Re

r

)n

JnPn sin(φ) +
n
∑

m=1

(

Re

r

)n

(Cnm cosϕ+ Snm sinϕ)Pnm sinφ

]}

(3.45)

Where

• ϕ = mλ+ ωete

• λ : Geographical longitude measure from prime meridian

• φ : Geocentric latitude of satellite measured from equator.

• Re : Mean Equatorial radius of earth

• ωe : Rotation rate of earth.
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• te : Time since Greenwich meridian lined up with X axis of ECI .

• Jn : Zonal harmonics of order zero.

• Pn, Pnm : Legendre polynomial of degree n and order 0, m respectively

• Cnm : tesseral harmonic coefficient for n 6= m

• Snm : Sectorical harmonic coefficient for n = m

Measurement of zonal, tesseral, sectorical coefficients, it is found that effects of J2 is at

least 400 times larger than the next most significant term. Hence for satellite formation,

reconfiguration problem where the control application and reconfiguration happens over

shorter period of the time hence all higher terms can be ignored. There for the gradient

function Gp can be written as [20]

Gp = −µ
r

(

Re

r

)2

J2P2 sin(φ)

where

• J2: 0.0010826

• P2 : 2nd Legendre polynomial of the form P2(X) = 1
2
(3X2 + 1)

Taking the gradient of Gp the perturbation acceleration in all three axis ECI frame is

obtained further the components of the aJ2 can be modeled in Hills frame as follows.

aJ2 = −3µR2
eJ2

r4c















(

1
2
− 3sin2isin2θ

2

)

êx

(sin2i sin θ cos θ)êy

(sin i sin θ cos i)êz















(3.46)

Where

• i : Chief satellite orbit inclination

• θ: ν + ω (True Anomaly + Argument perigee)
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Figure 3.5: Orbital Parameters [37]

• Re: Equatorial Earth Radius

• J2: J2 Zonal Harmonic Coefficient (0.00108629)

(Refer Figure 3.5) J2 perturbation term is function of satellite orbit inclination and i

and θ it is beneficial from point of view of controller synthesis that the disturbance is

modeled in the terms of state variables of deputy satellite X. The total disturbance

term ap = aJ2 is defined as difference in the disturbance acceleration of deputy and chief

satellite [30]

aJ2 = aJ2d − aJ2c (3.47)

aJ2 = −3µR2
eJ2
2























1

r4c













Jêx(ic, θc)

Jêy(ic, θc)

Jêz(ic, θc)













− 1

r4d













Jêx(id, θd)

Jêy(id, θd)

Jêz(id, θd)



































(3.48)

where,

• (ic, θc) : Orbital elements for chief satellite

• (id, θd) : Orbital elements for deputy satellite
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• Jêx = (1− 3sin2isin2θ)êx

• Jêy = (sin2i sin θ cos θ)êy

• Jêz = (sin i sin θ cos i)êz

Equation 3.48 is to be transformed to state dependent form, to carry out this trans-

formation the orbital elements (i, θ) needs to be expressed in the state variables X. A

transformation matrix Σ(t) introduced by [17] is used to convert the orbital elements

into state variables of relative motion under J2 perturbation. Using transformation ma-

trix Σ(t) state vector can be written as ~X = Σ(t)δξ. Where ~X is the state vector and

δξ = ξd − ξc that is difference between the orbital elements of deputy and chief satellite.

ξ = [ a θ i e cosω e sinω Ω ]T (3.49)

Is vector of orbital elements, for brevity the details of the transformation matrix are

omitted and details can be found in [17, 30, 36]. The relation between state vector and

difference in orbital elements of chief and deputy can be written as follows,

X = Σ(t)δξ (3.50)

δξ = Σ(t)−1X (3.51)

Since the orbital elements for chief satellite are known and state vector and orbital

elements for deputy satellite is known, hence the J2 model 3.48 is known completely and

is function of state alone. We can write the orbital elements of deputy in terms of orbital

elements of chief and state vectors as follows.

δξ = Σ(t)−1X

ξd − ξc = Σ(t)−1X (3.52)

ξd = ξc + Σ(t)−1X (3.53)

Hence the rewriting the equation, 3.48 as function of chief satellite orbital elements (ic, θc)
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and δξ the J2 perturbation model is expressed in the state dependent form as follows.

aJ2 =
3µR2

eJ2
2



























1

(rc + ρ)4















Jêx(ic + δi, θc + δθ)

Jêy(ic + δi, θc + δθ)

Jêz(ic + δi, θc + δθ)















− 1

r4c















Jêx(ic, θc)

Jêy(ic, θc)

Jêz(ic, θc)









































(3.54)

where

δθ = Σ−1
21 x1 + Σ−1

22 x2 + Σ−1
23 x3 + Σ−1

24 x4 + Σ−1
25 x5 + Σ−1

26 x6 (3.55)

δi = Σ−1
31 x1 + Σ−1

32 x2 + Σ−1
33 x3 + Σ−1

34 x4 + Σ−1
35 x5 + Σ−1

36 x6 (3.56)

The terms of transformation matrix Σ−1 are given in Appendix of Reference [36]

3.4 Summary and Conclusions

Primarily this chapter introduces the concept of two body problem under influence of

each other gravitational forces. Further section are concentrated on establishing the

concept of relative satellite dynamics, in this effort of deriving the relative dynamic

model of two satellite the reference frames earth centered frame (ECI) and Hill’s reference

frame are introduced. The relative motion of the satellites are derived in ECI frame

and further transformation details to Hill’s are introduced. The nonlinear model of

equation of motion in Hill’s frame (Clohessy-Wiltshire equation) is linearized to obtain

Hill’ equation of satellite formation flying. J2 perturbation is considered as the only

perturbing force external to system. The J2 model is derived using potential function

concepts and further the model is transformed to Hill’s frame of reference. This chapter

forms the basis for further chapter for control synthesis techniques.



Chapter 4

Infinite time LQR controller for

Satellite Formation Flying

Linear Quadratic Regulator(LQR), is a optimal control approach based on linear ap-

proximation of plant model of the form [36],

Ẋ = AX+BU+N(X) (4.1)

where A ∈ ℜn×n, B ∈ ℜn×m, and N(X) denotes the effect due to nonlinearity in

the plant model or unmodeled dynamics. The control synthesis using LQR algorithm

involves computation of optimal feedback gain matrix K such that the optimal control

can be written in state feedback form U = −KX [12, 16]. The term N(X) is ignored in

computation of control law U from this approach.

The following quadratic performance index is chosen to be minimized

J =
1

2

tf
∫

0

(

XTQX+UTRU
)

dt (4.2)

where tf is final time and Q ≥ 0, R > 0 are respectively state and control weight

matrices. For autonomous system, constant weight matrices and tf → ∞, minimization

34
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of the above cost function 4.2 is achieved at optimal control value

U = −KX (4.3)

U = −R−1BTPX (4.4)

Where P satisfies the Algebraic Ricatti Equation(ARE) 4.5 [12]

PA+ ATP − PBR−1BTP +Q = 0 (4.5)

Given condition on system that pair (A,B) is controllable and pair (A,C) is observable

where C is given as C = QTQ the solution to ARE 4.5 is positive definite [12,16]. positive

definiteness of Ricatti coefficient matrix P guarantees the close loop stability of the plant

that is asymptotic stability of the system.

4.1 Satellite formation Flying control using LQR

The Linear plant model for satellite formation flying in Hill’s frame of the form

Ẋ = AX+BU

Y = CX (4.6)

where the system matrices A,B,C are defined in the section 3.2.4 and are repeated here

for easy reference,

A =



































0 1 0 0 0 0

3ω2 0 0 2ω 0 0

0 0 0 1 0 0

0 −2ω 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −ω2 0



































, B =



































0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1



































, C = I6×6 (4.7)
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Satellite formation flying is basically a tracking problem, where the satellite states has to

track a desired states. To solve the SFF tracking problem in frame work of LQR theory,

the plant model needs to be remodeled in terms of state errors there by converting the

tracking problem to regulator problem and the solution can be obtained using optimal

LQR control technique. Lets consider the vectors

X =
[

x ẋ y ẏ z ż

]

(4.8)

Xd =
[

xd ẋd yd ẏd zd żd

]

(4.9)

and state error vector are defined as,

X̃ = X−Xd (4.10)

˙̃X = Ẋ− Ẋd (4.11)

Substituting 4.10 and 4.11 in 4.6 the system dynamics can be rewritten as follows,

˙̃X+ Ẋd = A
(

X̃+Xd

)

+BU (4.12)

˙̃X = AX̃+BU+
(

AXd − Ẋd

)

(4.13)

From above equation the truncated system dynamics ˙̃X = AX̃ + BU is used for com-

putation of optimal control using LQR technique and term N (X) =
(

AXd − Ẋd

)

is

considered as the known control such that the total control Utot = −KX̃+
(

AXd − Ẋd

)

ensure X → Xd [21]

4.2 Results and Discussion

In satellite formation flying the satellite can change the formation geometry through

reconfiguration of the length of the base line of formation or a new satellite can be

introduced into the formation.

For LQR numerical simulation, a formation reconfiguration of deputy satellite with
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Table 4.1: Chief Satellite Orbital Parameters, (LQR)

Orbital Parameters Value
Semi-major axis 10000km

Eccentricity 0
Orbit Inclination 0

Argument of Perigee 0
Longitude of ascending node 0

Initial True Anomaly 10

Table 4.2: Deputy Satellite Initial condition for LQR solution

Orbital Initial Value Final Value
Parameters

ρ(km) 1km 10(km)
θ(deg) 450 600

a(km) 0 0
b(km) 0 0

m (slope) 1 1.5
n(slope) 0 0

respect to the chief satellite is considered. The deputy satellite is considered to be in a

lower baseline length formation and it is desired to place the deputy satellite in the higher

baseline length formation with respect to chief satellite. The choice of initial and final

ρ are made small enough such that linear equation of motion that is Hill’s equation for

SFF is close enough to nonlinear Clohessy Wiltshire equation of SFF. Orbital parameters

for chief satellite are given in the following Table 4.1. Weight on states and control are

selected as Q = I6×6 and R = 109I3×3. The terminal position and velocity error are given

in Table 4.3 and state error history is plotted in Figure 4.6 and 4.7 The initial and final

desired relative parameters in terms of orbital elements for deputy satellite are given in

Table 4.2. The simulation uses △t = 1sec time step. The corresponding initial state

vector X0 for given initial relative orbital elements of the deputy satellite is obtained

from using transformation relations 4.14-4.19, which relates the state parameters in Hill’s
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Figure 4.1: Deputy satellite formation trajectory in Hill’s Frame

reference frame to the orbital parameter of deputy satellite.

x1 = ρ sin(ωt+ θ) + a (4.14)

x3 = 2ρ cos(ωt+ θ)− 3ω

2
at + b (4.15)

x5 = mρ sin(ωt+ θ) + 2nρ cos(ωt+ θ) (4.16)

ẋ1 = ρ cos(ωt+ θ) (4.17)

ẋ3 = −2ρω sin(ωt+ θ)− 3ω

2
a (4.18)

ẋ5 = mρω cos(ωt+ θ)− 2nρω sin(ωt+ θ) (4.19)

The formation trajectory of deputy satellite in Hill’s frame is shown in Figure 4.1. The

deputy satellite starts from the inner initial relative formation trajectory and is com-

manded to outer relative orbit. For better clarity of formation geometry the formation

trajectory are also shown in XY (Radial-Cross track), XZ (Radial-Out-of-plane) and

Y Z (Cross track-Out-of-plane) planes in Figures 4.2, 4.3, and 4.4 respectively. Figure

4.5 illustrates the optimal control required in achieving the desired state values Xd
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Figure 4.2: Deputy satellite formation trajectory in XY plane of Hill’s Frame

−10 −5 0 5 10
−30

−20

−10

0

10

20

30  

X (Km)

 

Z
 (

K
m

)

Initial Orbit
Desired Orbit
Trajectory

Figure 4.3: Deputy satellite formation trajectory in XZ plane of Hill’s Frame
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Figure 4.4: Deputy satellite formation trajectory in YZ plane of Hill’s Frame
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Figure 4.5: Control History for formation reconfiguration for circular chief satellite orbit
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Figure 4.6: Position Error for formation reconfiguration for circular chief satellite orbit
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Figure 4.7: Velocity Error for formation reconfiguration for circular chief satellite orbit
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Figure 4.8: Deputy satellite formation trajectory in Hill’s Frame (Eccentric Chief satellite
Orbit)

To have comparative study of LQR controller terminal state accuracy achieved for

circular and eccentric chief satellite orbits, a eccentric chief satellite orbit problem is

considered. Since the problem with eccentricity in chief satellite orbit is defined in

complete nonlinear domain, the term
(

AXd − Ẋd

)

in 4.13 is no more zero and acts

as known controller in addition to the optimal control term 4.3. The initial and final

condition on the deputy satellite is same as that for circular case given in Table 4.2.

Orbital parameters of chief satellite are taken to be same as that for circular orbit case

but for eccentricity value is considered as e = 0.15.

The formation trajectory for eccentric case and control profile is given in Figures 4.8

and 4.9 respectively. The final state errors for eccentric chief satellite case are given in

Table 4.3. The position error for eccentric case is 35m , 230m and 333m in x,y and

z respectively as compared to 1.62m,−3m and −6.6m respectively for circular case for

10km base length formation.
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Figure 4.9: Control Profile,(Eccentric Chief satellite Orbit)

Table 4.3: LQR trajectory State Errors for Circular and Eccentric Chief satellite orbits

State Circular Eccentric
Error Orbit Case Orbit case
x(km) 0.001619 0.035

ẋ(km/sec) 6.224× 10−5 −8.923× 10−4

y(km) −0.003066 0.23
ẏ(km/sec) 2.692× 10−5 −1.395× 10−2

z(km) −0.006593 0.3337
ż(km/sec) −1.039× 10−5 −1.696× 10−2
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4.3 Summary and Conclusions

This chapter primarily introduced the basic concept of generic LQR controller philosophy,

works with linear, control affine systems. Linear plant model that is Hill’s equation of

motion for satellite formation flying introduced in chapter were used. This chapter dealt

with details of optimal control computation to achieve the objective of putting a deputy

satellite in commanded formation with respect to the chief satellite. A brief comparative

study is made for state accuracies achieved using LQR controller for circular and eccentric

chief satellite orbit. It was inferred from the above said comparison since LQR controller

works with linear state model, final achieved state value accuracy degrades for eccentric

chief satellite orbits. Next chapter 5 introduce the concept of a suboptimal nonlinear

control namely State Dependent Ricatti Equation (SDRE) control technique. It is shown

in Results and Discussion section of next chapter 5 that SDRE technique caters to both

circular and eccentric chief satellite orbit formations with improved accuracy in the final

states compared to LQR results.



Chapter 5

State Dependent Ricatti controller

for Satellite Formation Flying

The SDRE technique has been primarily motivated from the standard linear quadratic

regulator (LQR) design philosophy. The key idea here is to first write the system dy-

namics in linear-looking state dependent coefficient (SDC) form, and then by repeatedly

solving the corresponding Ricatti equation online at every grid point of time [22, 24]

Even though the SDRE technique has been primarily developed for infinite-time

problems, recently some key ideas have emerged in the literature to extend the concept

to finite-time problems as well. A key motivation for that is perhaps the fact that many

guidance problems naturally result in finite-time formulations. Some of the prominent

techniques that have been reported in the literature are discussed here.

5.1 Infinite-time SDRE Formulation ARE Approach

The SDRE technique is primarily valid for control affine systems, the system dynamics

for which is given by

Ẋ = f (X) +B (X)U (5.1)

45
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The key philosophy in this technique is to first convert it to the state dependent coefficient

(SDC) form, where the system dynamics is algebraically re-written as

Ẋ = A (X)X+B (X)U (5.2)

Note that the above expression does not involve any linearization process. Next, the idea

is to minimize the following cost function

J =
1

2

∞
∫

t0

(

XTQ (X)X+UTR (X)U
)

dt (5.3)

Quite obviously, 5.2, along with 6.23 appear to be in the LQR form as soon as numerical

values of the state vector X is inserted in various matrices. Hence, following the solution

procedure of LQR theory, the control solution can be written as

U = −
[

R−1 (X)BT (X)P (X)
]

X = −K (X) X (5.4)

where, the Ricatti matrix P (X) is repeatedly computed from the following Algebraic

Ricatti Equation (ARE)

P (X)A (X) + AT (X)P (X) +Q (X)− P (X)B (X)R−1 (X)BT (X)P (X) = 0 (5.5)

It can be mentioned here that if the objective not X → 0 , but X → X∗ (some desired

value), then the following expression for the control variable can be used [22].

U = −K (X) (X−X∗) (5.6)
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In fact, for better tracking properties, it is also suggested in the literature [23] to incor-

porate an integral feedback term and use the following expression instead.

U = −KP (X) (X−X∗)−KI (X)

t
∫

t0

(X−X∗) dt (5.7)

Note that the Ricatti equation 5.5 needs to be solved at grid point of time as the matrix

values keep on changing. If possible, it can be solved in closed form by long hand algebra,

but most of the time it is solved using numerical algorithms. Even though the SDRE

technique is obviously a sub-optimal control design and can be carried out under certain

conditions, there are certain nice properties of this technique, which can be summarized

as follows:

• Under certain mild assumptions, the SDRE approach produces a closed loop system

that is locally asymptotically stable

• For scalar problems, the resulting SDRE nonlinear controller satisfies all the nec-

essary conditions of optimality and hence results in an optimal controller.

• Even though initially the solution is sub-optimal, it approaches to the optimal

solution with the evolution of time.

It can however be noted that Non-uniqueness of the parameterization of the system

dynamics poses a major challenge in successful implementation of the SDRE technique.

Nevertheless, it has found wide application in a number of problems across the globe.

One can find more details about the SDRE technique in [22].

5.2 Finite-time SDRE Approach

As pointed out before, even though the SDRE technique has been primarily developed for

infinite-time problems, recently some key ideas have emerged in the literature to extend

the concept to finite-time problems as well. Where the cost function to be minimized is
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as follows

J =

tf
∫

t0

(

XTQX+UTRU
)

dt (5.8)

subject to the state equation

Ẋ = A(X)X+BU

and imposing a hard constraint on the final states X (tf ) = Xf . Following the classical

optimal control theory, in addition to state equation 5.2, the other necessary conditions

of optimality are given by [25]

λ̇ = −QX −ATλ (5.9)

U = −R−1BTλ (5.10)

Substituting 5.10 in 5.2, the combined state and costate equation can be written in

matrix form as Hamiltonian system of state and co-state as







Ẋ

λ̇





 =







A(X) −BR−1BT

Q −A(X)T













X

λ





 = H







X

λ





 (5.11)

where

H =







A(X) −BR−1BT

Q −A(X)T





 (5.12)

is known as the ’Hamiltonian matrix’. The solution for the linear equation in 5.11 is

given as







X(t)

λ(t)





 = [ϕ(t, t0)]







X(t0)

λ(t0)





 =







ϕ11(t, t0) ϕ12(t, t0)

ϕ21(t, t0) ϕ22(t, t0)













X(t0)

λ(t0)





 (5.13)

where ϕ(t, t0) is known as the state transition and can be expressed as

ϕ(t, t0) = eH(t−t0) (5.14)
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One can notice here that whereas X(t0) is known from the initial condition, λ(t0) is not

known. However, from 5.13, it is also a fact that the following relationship holds good,







X(tf)

λ(tf )





 =







ϕ11(tf , t0) ϕ12(tf , t0)

ϕ21(tf , t0) ϕ22(tf , t0)













X(t0)

λ(t0)





 (5.15)

Hence, from 5.15 λ(t0) can be calculated as

λ(t0) = ϕ−1
12 (tf , t0) [Xf − ϕ11(tf , t0)X(t0)] (5.16)

Note that the hard constraint information X (tf) = Xf is utilized in the expression

in 5.16 to compute λ(t0). After knowing λ(t0) , λ(t) can be calculated from 5.13 and

finally the optimal control is calculated from 5.10. Note that the matrices A,B,Q,R

are time varying matrices, the expression for ϕ(t, t0) where matrix H(X) becomes time-

varying and the closed form expression for ϕ(t, t0) in 5.14 is not valid in ’strict sense’.

However, following the philosophy of the SDRE framework, the idea is to repeatedly

evaluate ϕ(t, t0) in 5.14 at every grid point of time and then evaluate the optimal control

expression.

5.3 Satellite Formation Flying SDC formulation

The SDRE control technique requires the nonlinear equation of motion to be re-written

in state dependent coefficient(SDC) form which has following structure.

Ẋ = A(X)X+B(X)U

relative position and relative velocities of the deputy satellite with respect to chief satel-

lite in Hill’s frame of reference are chosen as states of the system. It is assumed that the

all the states are available through measurement, hence a full state feedback is imple-

mented. The SDC formulation is not unique and dependents on the designer how they

reform the nonlinear system equation into the SDC form, many such suboptimal control
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synthesis is possible depending on the SDC form selected. The best SDC form is selected

which preserves the as much as possible the nonlinearity of the problem, avoid singularity

and yet rewrite the equation in linear looking form. Two methods of SDC formulation

using the nonlinear SFF equation of motion 3.22 is discussed in the subsequent sections

5.3.1 SDC Formulation Method : I

Method : I uses equation 3.22 SFF nonlinear equation of motion to be rewritten into

SDC form. We rewrite the following nonlinear terms, µ
γ
rc − µ

r2c
in 3.22 and express them

in the linear looking form and at the same time preserving the nonlinear behavior to

the extent possible and avoid any singularity. The term is rewritten and simplified as

follows [30]

µ

γ
rc −

µ

r2c
= µ







rc
(

(rc + x)2 + y2 + z2
)3 − 1

r2c





 (5.17)

= µ

[

rc

(r2c + 2rcx+ x2 + y2 + z2)3
− 1

r2c

]

(5.18)

Factorizing the term r2c from the denominator term.

µ

γ
rc −

µ

r2c
=

µ

r2c









1
(

1 + 2 x
rc
+ x2

r2c
+ y2

r2c
+ z2

r2c

) 3

2

− 1









(5.19)

=
µ

r2c





(

1−
(

−2
x

rc
− (x2 + y2 + z2)

r2c

))−
3

2

− 1



 (5.20)

Defining

ξ = −2
x

rc
− (x2 + y2 + z2)

r2c
(5.21)

=

(

− 2

rc
− x

r2c

)

x+

(

− y

r2c

)

y +

(

− z

r2c

)

z (5.22)
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Further using negative binomial expansion,

(1 + x)−n = 1− nx+
n (n+ 1)

2!
x2 − n (n + 1) (n+ 2)

3!
x3 + . . . (5.23)

the term (1− ξ)−
3

2 can be written as infinite series sum as follows,

(1− ξ)−
3

2 = 1 +
3

2
ξ +

3

2

(

3
2
+ 1

)

2!
ξ2 +

3

2

(

3
2
+ 1

) (

3
2
+ 2

)

3!
ξ3 + . . . (5.24)

Defining the term

ψ = 1 + ψ1 + ψ2 + ψ3 + . . .

where

ψ1 =

(

3
2
+ 1

)

2
ξ, ψ2 =

(

3
2
+ 2

)

3
ψ1ξ, ψ3 =

(

3
2
+ 3

)

4
ψ2ξ . . .

with the series expression the nonlinear term can be expressed as follows.

µ

γ
rc −

µ

r2c
=

µ

r2c

[

1 +
3

2
ψξ − 1

]

=
3µ

2r2c
ψξ (5.25)

Using the above state dependent coefficient form of the nonlinear term, the nonlinear

equation of relative motion of the satellite in Hill’s frame can be rewritten in the SDC

form as follows [30]



































ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6



































+



































0 1 0 0 0 0

ν̇2 − µ
γ
+ 3µ

2r3c

(

2 + x1

rc

)

ψ 0 ν̈ + 3µ
2r2c
ψx3 2ν̇ 3µ

2r2c
ψx5 0

0 0 0 1 0 0

−ν̈ −2ν̇ ν̇2 − µ
γ

0 0 0

0 0 0 0 0 1

0 0 0 0 −µ
γ

1





































































x1

x2

x3

x4

x5

x6



































(5.26)
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+



































0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1



































U (5.27)

5.3.2 SDC Formulation Method : II

Method : II uses the equation 3.27, SFF nonlinear equation of motion to be rewritten

into SDC form [20].

ẍ− 2ωẏ − ω2(rc + x)









1− r3c
(

(rc + x)2 + y2 + z2
) 3

2









− ax = 0 (5.28)

ÿ + 2ωẋ− ω2y









1− r3c
(

(rc + x)2 + y2 + z2
)

3

2









− ay = 0 (5.29)

z̈ + ω2z









r3c
(

(rc + x)2 + y2 + z2
) 3

2









− az = 0 (5.30)

Lets use definition of σx, σy and σz as defined in equations 3.28

σz =
r3c

(

(rc + x)2 + y2 + z2
)

3

2

σy = 1− σz

σx =
(

rc
x
+ 1

)

σy

substituting the terms in 3.28 into equation 3.27 we can write the equation 3.27 as

follows,

ẍ = 2ωẏ + ω2σxx+ ax

ÿ = −2ωẋ+ ω2σyy + ay (5.31)
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z̈ = −ω2σzz + az

Writing the above equation 5.31 in state space form Ẋ = A(X)X+B(X)U we get the

following equation.



































ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6



































=



































0 1 0 0 0 0

ν̇2σx 0 0 2ν̇ 0 0

0 0 0 1 0 0

0 −2ν̇ ν̇2σy 0 0 0

0 0 0 0 0 1

0 0 0 0 −ν̇2σz 0





































































x1

x2

x3

x4

x5

x6



































+



































0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1



































U (5.32)

For circular orbits,

The mean motion, ω = rate of true anomaly (satellite orbital angular velocity ν̇)

ω =

√

µ

r3c
= ν̇ (5.33)

Method : II SDC formulation do not approximate the nonlinear equation motion of SFF

as closely as approximated by Method : I. Since the nonlinear equations 3.27 of SFF

used by Method : II to arrive at the SDC formulation 5.32 is derived from 3.22 under

assumption that orbit is circular and term ν̈ = 0. Hence SDC formulation 5.32 only

caters to the circular reference orbit solution. Therefore the SDRE solution accuracy

depends on the SDC formulation of the system. Method : I formulation is used for the

result generation and as nonlinear controller for comparison with MPSP and G-MPSP

solution in chapter.

5.4 SDC formulation for J2 perturbation model

Nonlinear J2 perturbation model details are introduced in the section 3.3. The nonlinear

J2 model is given in the equation 3.54. Redefining the terms id = ic+ δi and θd = θc+ δθ
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in equation 3.54 and rewriting the equation 3.54,

aJ2 =
3µR2

eJ2
2



























1

(rc + ρ)4















Jêx(id, θd)

Jêy(id, θd)

Jêz(id, θd)















− 1

r4c















Jêx(ic, θc)

Jêy(ic, θc)

Jêz(ic, θc)









































(5.34)

Expressing the term, 1
(rc+ρ)4

using negative binomial expansion as a infinite sum series,

1

(rc + ρ)4
=

1
(

(rc + x)2 + y2 + z2
)2 (5.35)

=
1

(r2c + 2rcx+ x2 + y2 + z2)2
(5.36)

=
1

r4c







(

1−
(

2
x

rc
− x2 + y2 + z2

r2c

))−2






(5.37)

Defining

ξ = −2
x

rc
− (x2 + y2 + z2)

r2c
=

(

− 2

rc
− x

r2c

)

x+

(

− y

r2c

)

y +

(

− z

r2c

)

z

Binomial series expansion can be written as,

(1− ξ)−2 = 1 + 2ξ +
2 (2 + 1)

2!
ξ2 +

2 (2 + 1) (2 + 2)

3!
ξ3 + . . . (5.38)

Defining the term

η = 1 + η1 + η2 + η3 + . . . (5.39)

Where η′s are defined as follows,

η1 =
(2 + 1)

2
ξ, η2 =

(2 + 2)

3
ψ1ξ, η3 =

(2 + 3)

4
ψ2ξ

and so on.

Therefore using the above definition the nonlinear term can be written in linear
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looking form as follows,
1

(rc + ρ)4
=

1

r4c
+ 2

1

r4c
ηξ (5.40)

substituting 5.40 in 5.34 and rearranging the terms,

aJ2 =
3

2

µR2
eJ2
r4c









































Jêx(id, θd)

Jêy(id, θd)

Jêz(id, θd)















−















Jêx(ic, θc)

Jêy(ic, θc)

Jêz(ic, θc)









































(5.41)

+
3µR2

eJ2
r4c

η









































Jêx(id, θd)

Jêy(id, θd)

Jêz(id, θd)









































ξ (5.42)

The Second term in 5.42 is explicit function of ξ and hence the explicit function of states

values. But where as the first term in 5.42 is to be modeled into SDC form as follows.

Consider only the first term of equation 5.42,

aJ2 =
3

2

µR2
eJ2
r4c









































Jêx(id, θd)

Jêy(id, θd)

Jêz(id, θd)















−















Jêx(ic, θc)

Jêy(ic, θc)

Jêz(ic, θc)









































(5.43)

Using the definition of Jêx, Jêy and Jêz and substituting in the above equation we can

write the first term in 5.42 as follows,

aJ2 =
3

2

µR2
eJ2
r4c



























−3sin2(i+ δi)sin2(θ + δθ) + 3sin2(i)sin2(θ)

sin2(i+ δi) sin(2θ + 2δθ)− sin2(i) sin(2θ)

sin(2i+ 2δi) sin(θ + δθ)− sin(2i) sin(θ)



























(5.44)

in the above equation subscript c on the i and θ is dropped for simplicity. And the orbital

elements without subscript are considered to be orbital elements for chief satellite, and

orbital elements added with delta variation of quantity signifies the orbital elements for

deputy satellite. Now using Taylor series expansion the trigonometric function can be
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written in form of infinite series as follows,

sin(i) = i− i3

3!
+
i5

5!
+ . . . (5.45)

sin(i+ δi) = (i+ δi)− (i+ δi)3

3!
+

(i+ δi)5

5!
+ . . . (5.46)

and similarly we can write Taylor series expansion for

• sin(θ)

• sin(θ + δθ)

• sin(2i)

• sin(2i+ 2δi)

• sin(2θ)

• sin(2θ + 2δθ)

We can do some algebraic simplification to the to the Taylor series of sin (i+ δi) and

rewrite the series. Add and subtract i2, i4 and so on ti the term of the series and rewrite

the series as follows

sin(i+ δi) = (i+ δi)



1− i2

3!
−
(

(i+ δi)2 − i2
)

3!
+
i4

5!
+

(

(i+ δi)4 − i4
)

5!
+ . . .



 (5.47)

= (i+ δi)





(

1− i2

3!
+
i4

5!
+ . . .

)

+



−
(

(i+ δi)2 − i2
)

3!
+

(

(i+ δi)4 − i4
)

5!
+ . . .









(5.48)

Defining the following quantities

αi = 1− i2

3!
+
i4

5!
+ . . . (5.49)

αθ = 1− θ2

3!
+
θ4

5!
+ . . . (5.50)

βi = −
(

(i+ δi)2 − i2
)

3!
+

(

(i+ δi)4 − i4
)

5!
+ . . . (5.51)
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βθ = −
(

(θ + δθ)2 − θ2
)

3!
+

(

(θ + δθ)4 − θ4
)

5!
+ . . . (5.52)

for βi and βθ expanding the terms within the brackets and can be rewritten as follows,

βi = ηiδi, βθ = ηθδθ,

where ηi and ηθ are defined as follows,

ηi =
2C1i+ 2C2δi

3!
+

4C1i
3 + 4C2 (δi) i

2 + 4C3(δi)
2i+ 4C4(δi)

3

5!

ηθ =
2C1θ + 2C2δθ

3!
+

4C1θ
3 + 4C2 (δθ) θ

2 + 4C3(δθ)
2θ + 4C4(δθ)

3

5!

where C is binomial coefficient and nCk = n!
k!(n−k)!

.

Similar expression can be written for β2i and β2θ

Using the above Taylor series approximation of the trigonometric function of J2 model

we can write the SDC formulation of 5.44 J2 model as follows,

aJ2 =
3

2

µR2
eJ2
r4c



























−3 (ζx1 + ζx3) δi− 3 (ζx2 + ζx4) δθ

(ζy1 + ζy3) δi+ (ζy2 + ζy4) δθ

(ζz1 + ζz3) δi+ (ζz2 + ζz4) δθ



























(5.53)

+
3µR2

eJ2
r4c

η









































Jêx(id, θd)

Jêy(id, θd)

Jêz(id, θd)









































ξ (5.54)

Where

ζx1 = (αi + βi)
2(θ + δθ)2(αθ + βθ)

2 (2i+ δi)

ζx2 = i2(αi + βi)
2(αθ + βθ)

2 (2θ + δθ)

ζx3 = i2θ2(αθ + βθ)
2 (2αi + βi) ηi

ζx4 = i2θ2(αi)
2 (2αθ + βθ) ηθ
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ζy1 = 2(αi + βi)
2 (θ + δθ) (α2θ + β2θ) (2i+ δi)

ζy2 = 2i2 (θ + δθ) (α2θ + β2θ) (2αi + βi)
2ηi

ζy3 = 2i2αi
2 (α2θ + β2θ)

ζy4 = 4i2αi
2θη2θ

ζz1 = 2(α2i + β2i)
2 (θ + δθ) (αθ + βθ)

ζz2 = 4i (θ + δθ) (αθ + βθ) η2i

ζz3 = 2iα2i (αθ + βθ)

ζz4 = 2iα2iθηθ

Further putting SDC form of the nonlinear equation of motion of SFF in Hill’s Frame

and SDC form of the J2 perturbation model we can write the total SDC model of the

plant and perturbing forces, we can write the system equation of motion as follows [30].

Ẋ = AJ2 (X)X+BU (5.55)

5.5 Results and Discussions

The Result section are divided in two parts, one is infinite time formulation results

and another finite time formulation results. Each set of presented results have further

ratification as, results of SDC1 and SDC2 model of plant dynamics.

5.5.1 Infinite time SDRE Results

Infinite time SDRE solution procedure is illustrated in section 5.1. Since SDRE uses SDC

formulation of nonlinear equation of motion, hence a larger base-line length formation

and eccentric chief satellite orbit is considered to test the capability of the controller.

Table 5.1 lists the initial and final relative parameters of the deputy satellite. The simu-

lation step size is selected △t = 1sec. The simulation is stopped once the tracking error

becomes smaller than pre-selected tolerance value. The control weight (R) is selected
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based on the a selection process where weight is varied from R = 108I3×3 to R = 1011I3×3.

Higher weight on control (R) translates in lesser control effort and higher settling time

and lower R translates in higher control and lesser settling time. Formation plots for

R = 109I3×3 and R = 1011I3×3value are given in this section. The settling time and

control effort value for all control weight (R) values are given in Table 5.3

Table 5.1: Deputy Satellite Initial condition for Infinite time SDRE solution

Orbital Initial Value Final Value
Parameters

ρ(km) 5km 25(km)
θ(deg) 450 600

a(km) 0 0
b(km) 0 0

m (slope) 1 1.5
n(slope) 0 0

Table 5.2: Chief Satellite Orbital Parameters, (SDRE)

Orbital Parameters Value
Semi-major axis 10000km

Eccentricity 0.15
Orbit Inclination 0

Argument of Perigee 0
Longitude of ascending node 0

Initial True Anomaly 10

The formation trajectory of deputy satellite in Hill’s frame is shown in Figure 5.1.

The deputy satellite starts from the inner circle initial relative formation trajectory and is

commanded to outer circular relative orbit. The orbit is also shown in XY , XZ and Y Z

planes in Figure 5.3 for better visualization of tracking of final desired trajectory in all

three planes. Figure 5.2 gives control history for placing deputy satellite in the desired

formation with respect to chief satellite. Figure 5.5 is composite plots of formation

trajectory for a circular chief satellite orbit with initial and commanded values being
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Figure 5.3: SDRE,Reconfiguration Trajectory in XY , XZ and Y Z plane views.

Figure 5.4: Position and Velocity Error plots for ρinitial = 5km and ρfinal = 25km
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Figure 5.6: Position Error plots for ρinitial = 5km and ρfinal = 25km for R = 108I3×3,
R = 109I3×3, R = 1010I3×3 and R = 1011I3×3
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same as given in Table 5.1 but for eccentricity of chief satellite is considered as zero.

Figure 5.5 shows the formation trajectory for different weight on control R. It is clear

from the Figure 5.5 that higher the R value the control effort is less and there fore the

trajectory more gradually and hence the time to terminal errors to be small and reach

a steady state is also high Figure 5.6. The following Table 5.3 provides comparison of

settling time and control effort for various R values.

Table 5.3: Control Effort and Settling time variation with R values

Weight on Settling time Control effort
Control(R) 1e− 02

108I3×3 ≈ 1500sec 4.19
109I3×3 ≈ 2000sec 4.12
1010I3×3 ≈ 5000sec 3.58
1011I3×3 ≈ 7500sec 3.02

The above simulation for same initial and final condition is run for SDC formulation

derived from method : II. The final state tracking error values for method : I and

method : II are compared in Table 5.4 . It is clear from Table 5.4 that the state errors

of method : II are one order higher compared to SDC formulation by method : I. SDC

formulation of system dynamics of SFF using method : I retains the nonlinearity of the

problem to maximum extent possible, where as the SDC formulation usingmethod : II is

derived from the system equation of motion under assumption of circular chief satellite

orbits. Hence the nonlinear behavior of the problem due to eccentric orbits are not

captured well in this formulation and hence the error. This error will grow with higher

eccentricity and larger semi-major axis chief satellite orbit problem. The relative error

between SDC1 formulation and SDC2 formulation results is given in the Figure 5.7

5.5.2 Finite time SDRE Results

Finite time SDRE solution is presented in the section 5.2. For the finite time SDRE

simulation the weights on state is assumed to be zero that is Q = 0 and weight on

control R is selected as R = 109I3×3. It is also to noted that finite time SDRE solution
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Table 5.4: SDRE trajectory State Errors for SDC formulation using method : I and method :
II

State SDC formulation SDC formulation
Error Method : I Method : II
x(km) 0.0003 0.0085

ẋ(km/sec) 2.45× 10−6 −5.3× 10−5

y(km) −0.00096 0.002985
ẏ(km/sec) −1.47× 10−6 2.95× 10−5

z(km) −0.005931 −0.0011
ż(km/sec) 9.312× 10−6 −3.013× 10−5
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Figure 5.7: Relative Position and Velocity Error of SDC Method : I and Method : II
for ρinitial = 5km and ρfinal = 25km and tf = 4000sec

method achieve the final state has hard constraints. The simulation results are presented

for both SDC1 and SDC2 models, and further a state error comparison is done for both

SDC models. Out of two SDC formulation of nonlinear plant one with better terminal

state error convergence is used for comparative method for MPSP results discussed in

Chapter 6

The initial and desired relative parameters of the deputy satellite is given in Table

5.5. The chief satellite orbital parameters considered are same as that for Infinite time

SDRE solution case refer Table 5.2, three cases are experimented that is Case1 : e = 0,

Case2 : e = 0.05 and Case3 : e = 0.15 to illustrate the divergence of the solution of

SDC2 formulation with increase in eccentricity of the chief satellite orbit. The final time
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Table 5.5: Deputy Satellite Initial condition for Finite time SDRE solution

Orbital Initial Value Final Value
Parameters

ρ(km) 10km 100km
θ(deg) 50 350

a(km) 0 0
b(km) 0 0

m (slope) 1 1.5
n(slope) 0 0

tf for finite time SDRE simulation is selected from the settlings time for infinite time

SDRE solution with R = 109I3×3 case from Table 5.3 and simulation step size △t is
selected as 1sec

Figure 5.8 gives the details of the formation reconfiguration trajectory plot for case

eccentricity e = 0. The trajectory computed from both the SDC formulationMethod : I

and Method : II almost overlap each other and produce similar results for circular chief

satellite orbit formation reconfiguration problem. The control history computed using

SDC formulationMethod : I andMethod : II is presented in the figure 5.9. The position

error and velocity error for both the methods are given in the plots 5.10 and 5.11 and

terminal error in achieved final trajectory over commanded trajectory is given in the

Table 5.6

Figure 5.12 and 5.13 gives plot of reconfiguration trajectory and associated control

history for eccentric chief satellite case with e = 0.05. Figure 5.14 and 5.15 gives position

and velocity error details with respect to the commanded trajectory values. The terminal

error of reconfiguration trajectory is given in Table 5.6

The simulation results of the case with eccentricity e = 0.15 are similar to results of

case e = 0.05 where one can see formation trajectory computed by SDC2 method diverges

much more and formation trajectory not converging to desired final orbit, where as the

SDC1 method performs nominal and %ρerror < 1%. The final state errors for SDC1 and

SDC2 this simulation results are given in Table 5.6.
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Figure 5.8: Finite time SDRE formation Trajectory for SDCMethod : I andMethod : II
for ρinitial = 10km and ρfinal = 100km and e = 0
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Figure 5.9: Control History for formation for SDC Method : I and Method : II
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Figure 5.10: Formation Trajectory Position Error for SDC Method : I and Method : II
for ρinitial = 10km and ρfinal = 100km and e = 0
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Figure 5.11: Formation Trajectory Velocity Error for SDC Method : I and Method : II
for ρinitial = 10km and ρfinal = 100km and e = 0
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Figure 5.12: Finite time SDRE formation Trajectory for SDC Method : I and Method :
II for ρinitial = 10km and ρfinal = 100km and e = 0.05
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Figure 5.13: Control History for formation for SDC Method : I and Method : II
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Figure 5.14: Formation Trajectory position error for SDC Method : I and Method : II
for ρinitial = 10km and ρfinal = 100km and e = 0.05
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Figure 5.15: Formation Trajectory velocity error for SDC Method : I and Method : II
for ρinitial = 10km and ρfinal = 100km and e = 0.05

Table 5.6: SDC1 and SDC2 formulation Terminal State error comparison for Case e = 0,
e = 0.05 and e = 0.15

State Error e=0 e=0.05 e=0.15
SDC-1 SDC-2 SDC-1 SDC-2 SDC-1 SDC-2

x(km) 0.1798 0.3901 0.08 -68.15 -1.178 246.8
ẋ(km/sec) 0.0006 0.00022 0.00019 -0.0982 -0.0008 -0.0041
y(km) -0.1314 -0.477 -0.273 -17.35 1.693 -160

ẏ(km/sec) 0.00026 -0.00051 0.000205 0.04 0.005036 -0.4
z(km) -1.226 -1.411 -1.389 -18.51 0.80613 -28.43
ż(km) -.0015 -0.0017 -0.0014 -0.01502 0.0007 -0.005
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5.6 Summary and Conclusions

This chapter primarily introduced suboptimal SDRE control details.Inifnite time and

Finite time SDRE formulation and solution procedure details are introduced in 5.1 and

5.2. SDRE control requires the nonlinear equation of motion of satellite formation flying

problem to be written in the state dependent co-efficient form. In section details of SDC

modeling methods are introduced, two SDC form are discussed. The results section

displayed the versatility of the SDRE method to handle satellite formation problem

involving high eccentricity and larger base-length formation separation problems.Infinite

time and finite time solutions were discussed. A comparative study was made between

SDC-1(Method : I) and SDC-2 (Method : II) formulation solutions in both infinite

time and finite time solution domain and it was found that SDC1 solutions converged to

desired trajectory within the prescribed tolerance band of < 1% error, where as SDC2

formulation failed to achieve the similar accuracy and solution diverged as eccentricity

of chief satellite orbit was increased. It is inferred from the above exercise that SDC-

1 formulation retains the nonlinearity of the problem to maximum extent possible and

hence finite time solution of SDC-1 system model of SFF is chosen as comparative method

for MPSP and G-MPSP in further section.



Chapter 6

Model Predictive Static

Programming

This technique has been inspired from the philosophies of Model Predictive Control

(MPC) [31] and Approximate Dynamic Programming (ADP) [34]. MPSP technique

caters for control synthesis for class of finite time horizon optimal control problem.Here

in this chapter the mathematical details of MPSP method is presented. Model predictive

static programming method considers the general nonlinear system in discrete form. The

discrete representation of state and output equations are given as follows,

Xk+1 = Fk(Xk, Uk) (6.1)

Yk = h(Xk) (6.2)

where X ∈ ℜn, U ∈ ℜm, Y ∈ ℜp and k = 1, 2, . . . , N are the time steps. The primary

objective is to come up with a suitable control history Uk, k = 1, 2, . . . , N − 1(starting

with a suitable guess), so that the output at the final time step YN goes to a desired

value Y ∗
N , i.e. YN → Y ∗

N . In addition, the aim is to achieve this task with minimum

control effort.

The MPSP method needs the initial guess control history. The guess control history

can be any control values U0 for grid points from 1, 2 . . .N . This guess control is not

71
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expected to satisfy the objective of achieving zero terminal error. MPSP technique gives

the technique to improve upon this initial guess control history by computing the control

variable error history which needs to be subtracted from the previous control to compute

the new improvised control history. The final objective is evaluated with the new control

values applied at each grid point. If the convergence of the output vector (YN) at final grid

point is not sufficiently close enough to the desired value (Y ∗

N), then further iteration are

carried out to refine the control history until the objective (YN → Y ∗

N) is met. The control

history update technique presented in MPSP frame work is a close form expression, and

hence the evaluation of the same requires lesser computational requirements and hence

is apt candidate for online implementation.

To proceed with the mathematical details, first the error in the output is defined as

△YN = YN − Y ∗

N . Next, using Taylor series expansion, YN is expanded about Y ∗

N as

follows

YN = Y ∗

N +

[

∂YN
∂XN

]

dXN +HOT (6.3)

where HOT contains the ‘higher order terms’. From (6.3), neglecting HOT the error in

the output can be written as

△YN ∼= dYN =

[

∂YN
∂XN

]

dXN (6.4)

However from (6.1), one can write the error in state at time step (k + 1) as

dXk+1 =

[

∂Fk

∂Xk

]

dXk +

[

∂Fk

∂Uk

]

dUk (6.5)

where dXk and dUk are the error of state and control at time step k respectively. Ex-

panding dXN as in (6.5) for k = N − 1, and similarly for dXN−1 for k = N − 2 and so

on, one can carry out the necessary algebra and continue until k = 1. Finally taking the
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help of (6.4) one can write

dYN = A dX1 +B1dU1 + · · ·+BN−1dUN−1 (6.6)

where,

A
∆
=

[

∂YN
∂XN

] [

∂FN−1

∂XN−1

]

· · ·
[

∂F1

∂X1

]

(6.7)

Bk
∆
=

[

∂YN
∂XN

] [

∂FN−1

∂XN−1

]

· · ·
[

∂Fk+1

∂Xk+1

] [

∂Fk

∂Uk

]

(6.8)

Since the initial condition is specified, there is no error in the first term. This means

dX1 = 0 and hence 6.6 reduces to

dYN =
N−1
∑

k=1

BkdUk (6.9)

At this point, it can be pointed out that if one evaluates each of the Bk, k = 1, . . . , (N−
1) as in (6.8), it will be a computationally intensive tasks (especially when N is high).

However, it is possible to compute them recursively [27], [26] for details. Next, the idea

is to minimize the following objective (cost) function

J =
1

2

N−1
∑

k=1

(U0
k − dUk)

TRk(U
0
k − dUk) (6.10)

where U0
k , k = 1, . . . , (N−1) is the previous control history solution and dUk is the corre-

sponding error in the control history. The cost function in (6.10) needs to be minimized

subjected to the constraint in (6.9), where Rk > 0 (a positive definite matrix) is the

weighting matrix, which needs to be chosen judiciously by the control designer. Equa-

tions (6.9) and (6.10) formulate an appropriate constrained static optimization problem.

Hence, using optimization theory [12], and carrying out the necessary algebra [27] [26],

the updated control at time step k = 1, 2, . . . , (N − 1) is given by

Uk = U0
k − dUk = R−1

k BT
k A

−1
λ (dYN − bλ) (6.11)
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where,

Aλ
∆
=

[

−
N−1
∑

k=1
BkR

−1
k BT

k

]

, bλ
∆
=

[

N−1
∑

k=1
BkU

0
k

]

In addition to the recursive computation of sensitivity matrices, it is clear that the

updated control history solution in (6.11) is a closed form solution, and hence, control

solution can be updated with very minimal computational requirement. We also mention

that the relative magnitude of the control input at various time steps can be adjusted by

properly adjusting the weight matrixes Rk, k = 1, . . . , (N − 1) associated with the cost

function. For further details on MPSP one can refer [26, 27].

6.1 Problem Formulation in MPSP Framework

MPSP formulation needs the nonlinear equation of motion 3.23 to be written in discrete

form. Euler discretization method is used for writing the nonlinear equation of motion

in discrete form. Euler method is a first-order numerical procedure for solving ordinary

differential equations (ODEs) with a given initial value. It is the most basic explicit

method for numerical integration of ordinary differential. The discrete form the equa-

tion 3.23 can be obtained as follows,

Ẋ = f(X,U) (6.12)

Xk+1 −Xk

∆t
= f(Xk,Uk) (6.13)

Xk+1 = Xk +∆t (f(Xk,Uk)) (6.14)

Xk+1 = F(Xk,Uk) (6.15)

Where F(Xk,Uk) = Xk +∆t (f(Xk,Uk))

Using the above technique the discretized form of equation of motion of relative dynamics
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of deputy satellite with respect to chief satellite can be written as follows,

x1k+1 = x1k +∆t(x2k) (6.16)

x2k+1 = x2k +∆t

(

2ν̇x4k + ν̈x3k + ν̇2x1k −
µ

γk
x1k −

µ

γk
rc +

µ

r2c
+ U1 + aJ2,k

)

(6.17)

x3k+1 = x3k +∆t(x4k) (6.18)

x4k+1 = x4k +∆t

(

−2ν̇x2k − ν̈x1k + ν̇2x3k −
µ

γk
x3k + U2 + aJ2,k

)

(6.19)

x5k+1 = x5k +∆t(x6k) (6.20)

x6k+1 = x6k +∆t

(

− µ

γk
x5k + U3 + aJ2,k

)

(6.21)

and the discrete form of system output is written as,

YN = XN (6.22)

where k = 1, 2, 3 . . .N are time steps. How ever Euler integration method is used for

discretization of the system dynamics, a more accurate and reliable numerical integration

technique Forth order Runge-Kutta method is used to simulate the system dynamics

further in time using the control values computed from MPSP method.

The objective of the problem statement is to form the formation or to reconfigure the

formation flying of satellites to the desired orbit. The Deputy satellite is initially in a or-

bit around the earth with initial formation separation of ρinitial. It is desired to place the

deputy satellite in new formation with spatial separation of ρfinal. The objective of the

problem is to minimize the control effort required to reach the new orbit, and at the same

time, deputy satellite should execute the reformation with minimum terminal state error.

Mathematically we can put the problem objectives as follows. The main problem objec-

tive is to minimize the terminal position errors i.e.
[

x1 x3 x5

]T

→
[

x∗1 x∗3 x∗5

]T

at t = tf . However, since the velocity components should also match with the desired

orbital parameters, one can also impose
[

x2 x4 x6

]T

→
[

x∗2 x∗4 x∗6

]T

at t = tf .
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The error in the output “dYN“ is evaluated as follows

dYN = YN −Y∗

N (6.23)

where Y∗

N is the desired state vector.

Aim is to compute the control command Uk, where k = 1, . . . , (N − 1) so that

dYN → 0. To achieve this objective, the coefficients B1 to BN−1 are evaluated using 6.8.

Finally the control command is updated using 6.11. The partial derivative of F (Xk,Uk)

and YN required to compute the sensitive matrices Bk are

∂F (Xk,Uk)

∂Xk

= I6×6 +∆t

[

∂fk
∂Xk

]

(6.24)

∂F (Xk,Uk)

∂Uk

= △t
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(6.25)

∂YN

∂XN

= I6×6 (6.26)

The component of the partial derivative term
(

∂Fk

∂Xk

)

are given as follows,

∂f1
∂x2k

= 1 (6.27)

∂f2
∂x1k

= ν̇2k − µ





γ − 3x1kγ
1

2

k (rck + x1k)

γ2k



+ 3µrckγ
−

5

2

k (rck + x1k) (6.28)

∂f2
∂x3k

= ν̈k + 3µγ
−

5

2

k x3k (rck + x1k) (6.29)

∂f2
∂x4k

= 2ν̇k (6.30)

∂f2
∂x5k

= 3µ (rck + x1k) γ
−

5

2

k x5k (6.31)
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∂f3
∂x4k

= 1 (6.32)

∂f4
∂x1k

= −ν̈k − 3µx3kγ
−

5

2

k (rck + x1k) (6.33)

∂f4
∂x2k

= −2ν̇k (6.34)

∂f4
∂x3k

= ν̇2k + µ





γ − 3x23kγ
1

2

k

γ2k



 (6.35)

∂f4
∂x5k

= −3µx3kx5kγ
−

5

2

k (6.36)

∂f5
∂x6k

= 1 (6.37)

∂f6
∂x1k

= 3µx5k (rck + x1k) γ
−

5

2

k (6.38)

∂f6
∂x3k

= 3µx3kx5kγ
−

5

2

k (6.39)

∂f6
∂x5k

= −µ




γk − 3x5kγ
1

2

k

γ2k



 (6.40)

The component of the partial derivative of J2 perturbation term,
(

∂J2,Xk

∂Xk

)

are given as

follows,

∂J2x
∂x1

= −3

2
µJ2R

2
e

[

4x1

(rc + ρ)5
√
ρ
− 4x1

(rc + ρ)5
√
ρ

(

3sin2 (i+ δi) sin2 (θ + δθ)
)

+
3

(rc + ρ)4

{

2 sin (i+ δi) cos (i+ δi) Σ−1
31 sin

2 (θ + δθ) + 2sin2 (i+ δi)

sin (θ + δθ) cos (θ + δθ) Σ−1
21

}]

(6.41)

∂J2x
∂x2

= −3

2
µJ2R

2
e

[

3

(rc + ρ)4

{

2 sin (i+ δi) cos (i+ δi) Σ−1
32 sin

2 (θ + δθ)

+2sin2 (i+ δi) sin (θ + δθ) cos (θ + δθ)Σ−1
22

}]

(6.42)

∂J2x
∂x3

= −3

2
µJ2R

2
e

[

4x3

(rc + ρ)5
√
ρ
− 4x3

(rc + ρ)5
√
ρ

(

3sin2 (i+ δi) sin2 (θ + δθ)
)

+
3

(rc + ρ)4

{

2 sin (i+ δi) cos (i+ δi) Σ−1
33 sin

2 (θ + δθ) + 2sin2 (i+ δi)

sin (θ + δθ) cos (θ + δθ) Σ−1
23

}]

(6.43)

∂J2x
∂x4

= −3

2
µJ2R

2
e

[

3

(rc + ρ)4

{

2 sin (i+ δi) cos (i+ δi) Σ−1
34 sin

2 (θ + δθ)
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+2sin2 (i+ δi) sin (θ + δθ) cos (θ + δθ)Σ−1
24

}]

(6.44)

∂J2x
∂x5

= −3

2
µJ2R

2
e

[

4x5

(rc + ρ)5
√
ρ
− 4x5

(rc + ρ)5
√
ρ

(

3sin2 (i+ δi) sin2 (θ + δθ)
)

+
3

(rc + ρ)4

{

2 sin (i+ δi) cos (i+ δi) Σ−1
35 sin

2 (θ + δθ) + 2sin2 (i+ δi)

sin (θ + δθ) cos (θ + δθ) Σ−1
25

}]

(6.45)

∂J2x
∂x6

= −3

2
µJ2R

2
e

[

3

(rc + ρ)4

{

2 sin (i+ δi) cos (i+ δi) Σ−1
34 sin

2 (θ + δθ)

+2sin2 (i+ δi) sin (θ + δθ) cos (θ + δθ)Σ−1
24

}]

(6.46)

Similarly the partial derivatives of J2 perturbation component in y and z direction can

be evaluated.

6.1.1 Guess Control(LQR)

The guess controller for MPSP SFF problem is obtained through LQR solution approach.

The infinite time horizon problem is considered with linearized model.

Ẋ = AX+BU (6.47)

System matrices A and B are defined in chapter 4, cost function considered for LQR

solution is as follows

J =
1

2

∞
∫

0

(

XT
kQlXk +UT

kRlUk

)

dt (6.48)

For LQR guess solution the weight on state Ql = I6×6 and Rl = 109I3×3 are chosen.

Note that weights on control i.e. Rk used to compute the control using equation 6.11

in MPSP frame work, is selected as Rk = △tRl, same as that used for guess solution

method (LQR) multiplied by the time step. The state values at final time step tf from

the desired commanded trajectory are used for evaluating state deviation dYN at final

time.
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Table 6.1: Deputy Satellite Initial condition for MPSP solution

Orbital Initial Value Final Value
Parameters

ρ(km) 0.5km 5km
θ(deg) 450 600

a(km) 0 0
b(km) 0 0

m (slope) 1 1.5
n(slope) 0 0

6.2 Results and Discussions

6.2.1 Results without J2 perturbation

In this section, two cases are studied (i) circular chief satellite orbit, 10, 000 km radius

vector (ii) Eccentric chief satellite orbit with eccentricity 0.15 and 10, 000 km semi-major

axis details are presented in Table 6.2. Table 6.1 lists the initial and final relative

parameters of the deputy satellite. The simulation step size is selected △t = 1sec.

MPSP numerical simulation is stopped once the error criterion is met %ρe < 0.5% . The

error criterion is specified in terms of percentage error over final desired base-line length

formation commanded.

%ρe =
(ρf − ρd)

ρd
× 100 (6.49)

• ρe : Final reconfiguration base-line length error

• ρf : Final achieved ρ

• ρd : Desired ρ

Finite time State Dependent Ricatti (SDRE) solution presented in chapter 5 is used as

comparative method for MPSP solution.

Figure 6.1 and 6.9 shows in 3D orbit transfer from the initial formation to new com-

manded formation trajectory for circular and eccentric chief satellite orbit respectively.

MPSP trajectory is significantly different from the initial guess (LQR trajectory). MPSP
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Table 6.2: Chief Satellite Orbital Parameters, (MPSP)

Orbital Parameters Value
Semi-major axis 10000km

Eccentricity Case:1 e = 0, Case:2 e = 0.15
Orbit Inclination 0

Argument of Perigee 0
Longitude of ascending node 0

Initial True Anomaly 10
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solution tries to minimizes the control and achieve the final states as hard constraints.

Ten iterations are carried out and corresponding state error for LQR, MPSP and SDRE

solution are tabulated in Table 8.2. Figure 6.2, 6.3, 6.4, 6.5, 6.6and 6.9 refers to ec-

centric chief satellite orbit results. From Table-8.2 it can be noticed that improvement

in final accuracy in achieved states is great and this accuracy is achieved along with

control minimization (Figure 4.2). Figure 6.2 shows the control plots for LQR, MPSP

and SDRE methods. The total control effort (area under the curve in figure 4.2) for

SDRE is 76.0195
(

km
sec2

)2
and MPSP is 69.0704

(

km
sec2

)2
. The control effort required for

MPSP method for placing the satellite in desired formation is significantly lesser com-

pared to SDRE. Figures 6.3, 6.4 and 6.5, 6.6 presents the error in position and velocity

respectively for guess control LQR, SDRE and MPSP respectively. For a SFF problem

achieving the final velocity states along with position states on the final orbit is very

crucial. Since reaching the desired position on the desired orbit does not suffice the

formation requirement, to be on the orbit and maintain desired relative separation the

injection velocity at the desired orbit are to be met very closely. Note that rendezvous

mission which are subset of formation flying where final separation distance is very small,

maintaining tight tolerance on the final achieved relative velocities is very critical for suc-

cess of mission. Else over a period the satellite drifts away from the required formation

thereby needing to apply control repeatedly to maintain the formation. It can be seen

that the velocity error for MPSP trajectory converges very close to zero value (see Table

8.2). Figure 6.7 shows the plot of MPSP solution for different initial condition on the

initial formation orbit for circular chief satellite orbit with initial separation of 0.5 km to

commanded radial separation between and deputy satellite as 1.5 km. For every different

initial conditions the MPSP solution converges satisfactorily to the desired orbit.

Figure 6.8 shows the trajectory plot for formation flying with initial condition of

0.5 km base-line length (ρ) to 100 km spatial separation with rest of the orbital parame-

ters being same as given in Table 6.1 and circular chief satellite orbit. These set of final

parameters with high separation trajectory is considered to demonstrate the accuracy of

MPSP over Linearized dynamics solution.
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Table 6.3: LQR,SDRE and Iteration wise MPSP state error.(Position errors are in “km“
and velocity in “km

sec
“)

Error Initial Itr#1 Itr#3 Itr#5

in States Guess(LQR)
x -3.1985 -3.7777 -0.9491 -0.0407
ẋ -0.0038 -0.0028 -0.0020 -0.0001
y -2.7933 3.3318 0.1499 -0.0049
ẏ 0.0022 0.0030 0.0007 0.0000297
z 1.1496 -0.0634 -0.0000250 0.0000012
ż -0.0001 -0.0001 0.00000024 0.000000018

Error Itr#7 Itr#9 Itr#10 SDRE

in States (1e− 3) (1e− 4)
x 0.0017 0.2787 -0.6386 -0.0027
ẋ 0.0000022 0.0006 -0.0015 5.129e-06
y -0.0009 -0.0361 -0.0150 0.00593
ẏ -0.0000011 -0.0002 0.0004 -5.02e-06
z 0.19e-06 -0.41e-04 0.289e-05 0.00835
ż 0.3e-09 0.16e-06 0.22e-06 7.625e-06

Table 6.4: LQR,SDRE and MPSP state error(Eccentric chief satellite orbit solution,
Final ρ = 5 km). (Position errors are in “km“ and velocity in “km

sec
“)

Error Initial SDRE MPSP

in States Guess(LQR) (1e− 4)
x -3.7777 -0.00267 -0.6386
ẋ -0.0028 5.129e-06 -0.0015
y 3.3318 0.00593 -0.0150
ẏ 0.0030 -5.02e-06 0.00039
z -0.0634 0.00835 0.289e-05
ż -0.0001 7.625e-06 0.22e-06
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Table 6.5: LQR, MPSP and SDRE STATE ERROR (ρ = 100km)(Position errors are in
“km“ and velocity in “km

sec
“)

Error LQR SDRE MPSP
in States

x 26.166 0.813 -0.0263
ẋ 0.0305 0.001384 -0.0003
y 10.2913 0.217 -0.2691
ẏ -0.0151 0.000434 -0.0015
z 1.1628 0.1271 0.0000486
ż 0.0009 0.0006177 0.000000128

The state errors for the LQR (guess solutions), MPSP and SDRE solutions are given in

Table 6.5. The error in the final ρ achieved using LQR is 2 km, SDRE is 1.4 km and

MPSP value of 0.1 km, the convergence criterion for MPSP solution is meet with eight

iteration (%ρe = 0.1%) and numerical simulation is stopped.

6.2.2 Results with J2 perturbation effects considered along plant

model

I this section the simulation results presented involve the perturbation model for J2 term.

The J2 disturbance term is exogenous to system and acts as additional component of

acceleration in all three direction in Hill’s frame along with applied control forces. The

control value computed from MPSP technique with known model of J2 perturbation

account for this perturbing forces and effectively achieve the set objective of tracking a

commanded trajectory with minimum terminal error. Similar to MPSP results with no

J2 effects the final time tf is selected as 2000sec and simulation time step is chosen as

△t = 1sec.

To have a comparative study of MPSP technique capability to synthesize the con-

troller under external perturbation forces, the initial and final relative parameters of the

deputy satellite are considered are same as used for MPSP simulation results given in

Table 6.1. The orbital parameter of chief satellite is given Table 6.6 . The simulation

step size is selected △t = 1sec. MPSP numerical simulation is stopped once the error
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Table 6.6: Chief Satellite Orbital Parameters, (MPSP) with J2 perturbation model

Orbital Parameters Value
Semi-major axis 10000km

Eccentricity e = 0.15
Orbit Inclination 60

Argument of Perigee 0
Longitude of ascending node 0

Initial True Anomaly 10

Table 6.7: LQR, MPSP and SDRE STATE ERROR (ρ = 5km with J2 perturba-
tion)(Position errors are in “km“ and velocity in “km

sec
“)

Error LQR SDRE MPSP
in States

x -19.361 -0.7303 7.05e-04
ẋ -0.008942 -0.0014 1.201e-06
y 7.727 -0.2502 3.45e-04
ẏ 5.02e-06 0.004 1.466e-07
z -5 0.5559 3.684e-04
ż -0.006941 0.0007 4.827e-07

criterion is met %ρe < 0.5% Figure 6.11, 6.12 gives position error for guess control

LQR, comparative method SDRE and MPSP method under the effects of J2 perturba-

tion. Figure 6.10 gives the control effort of guess control, SDRE and MPSP respectively.

Table gives the details of terminal state errors for LQR, SDRE and MPSP techniques

under effect of J2 perturbation acceleration. Table illustrates the comparative behav-

ior of MPSP and SDRE simulation results for reformation problem with and without

J2 perturbation. It can be seen that SDRE results diverge under consideration of J2

perturbation effects where as MPSP method satisfactorily drives the terminal state to

desired orbital states hence leading to close tracking of commanded orbit.

6.3 Summary and Conclusions

In this section the details satellite formation flying using MPSP control is presented.

The MPSP theory is introduced in initial section of this chapter. The SFF problem
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ẏerr,MPSP
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Figure 6.14: Velocity Error for MPSP final iteration with J2 perturbation (Iteration No.
10)

is defined in MPSP frame work. The simulation are carried out with and without the

effects of J2 perturbation model. IN both the case it is found out that MPSP solution

results are superior compared to comparative SDRE solution, and that MPSP in both

situation could compute the controller such that the terminal state error is minimal and

within the tolerance limit that is %ρe < 1%. In next chapter G-MPSP controller for

SFF is introduced, and formation reconfiguration results are discussed.



Chapter 7

Generalized Model Predictive Static

Programming (G-MPSP)

In this section, the theoretical details of the generalized model predictive static pro-

gramming (G-MPSP) are presented. Note that a brief summary of MPSP theory has

been presented in Appendix. For more details of MPSP theory, one can refer to recent

publications [26–28]. In the proposed design, a general nonlinear systems in continuous

time setting is considered with the following state dynamics and output equation:

Ẋ (t) = f (X (t) , U (t)) (7.1)

Y (t) = h (X (t)) (7.2)

where, X ∈ ℜn, U ∈ ℜm and Y ∈ ℜp. The primary objective is to obtain a suitable

control history U(t) so that the output Y (tf ) at the fixed final time tf goes to a desired

value Y ∗(tf ), i.e. Y (tf) → Y ∗(tf). It is also required that this task is achieved with

minimum control effort. For the technique presented here, one needs to start from a

“guess history” of the control solution. With the application of such a guess history,

obviously the objective is not expected to be met, and hence, there is a need to improve

this solution. In this section, we present a way to compute an error history of the control

variable, which needs to be subtracted from the previous history to get an improved

92
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control history. This iteration continues until the objective is met, i.e., until Y (tf) →
Y ∗(tf). Note that the technique presented here produces an update in control history in

a closed form thereby reducing the computational load substantially as well as making

it computationally very efficient. Next, the mathematical details of the G-MPSP design

are presented.

Let the error in output at the final time tf be given as follows:

δY (X (tf)) = [Y (tf )− Y ∗ (tf )] (7.3)

Multiplying both sides of 7.1 by a matrix W (t) produces

W (t) Ẋ =W (t) f (X (t) , U (t)) , (7.4)

where, the computation of the matrix W (t) ∈ ℜp×n is described later in this section.

The following is obtained by integrating both sides of 7.4 from t0 to tf as

∫ tf
t0

[

W (t) Ẋ (t)
]

dt =
∫ tf
t0 [W (t) f (X (t) , U (t))]dt. (7.5)

Next, adding the quantity Y (X (tf )) to both sides of 7.5 and using algebraic manip-

ulation, the following is obtained as

Y (X (tf )) = Y (X (tf )) +
∫ tf
t0 [W (t) f (X (t) , U (t))]dt− ∫ tf

t0

[

W (t) Ẋ (t)
]

dt. (7.6)

Considering the last term of the right hand side of 7.6 and integrating by parts

produces
∫ tf
t0

[

W (t) Ẋ (t)
]

dt

= [W (t)X (t)]tft0 −
∫ tf
t0

[(

dW (t)
dt

)

X (t)
]

dt

= [W (tf )X (tf)−W (t0)X (t0)]−
∫ tf
t0

[

Ẇ (t)X (t)
]

dt.

(7.7)
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Substituting 7.7 in 7.6 leads to the following

Y (X (tf)) = Y (X (tf ))− [W (tf)X (tf )] + [W (t0)X (t0)]

+
∫ tf
t0

[

W (t) f (X (t) , U (t)) + Ẇ (t)X (t)
]

dt.
(7.8)

The following expression is obtained by considering the variation of the both sides of

7.8 as

δY (X (tf )) =
[(

∂Y (X(t))
∂X(t)

−W (t)
)

δX (t)
]

t=tf
+ [W (t0) δX (t0)]

+
∫ tf
t0

[(

W (t) ∂f(X(t),U(t))
∂X(t)

+ Ẇ (t)
)

δX (t) +
(

W (t) ∂f(X(t),U(t))
∂U(t)

)

δU (t)
]

dt

(7.9)

Next, it is desired to determine the variations δY (X (tf )) produced by the given

δU (t). The idea is to choose the W (t) in a way that causes the coefficients of δX (t) in

the above equation to vanish. The following is thus in order:

Ẇ (t) = −W (t)

(

∂f (X (t) , U (t))

∂X (t)

)

, (7.10)

W (tf ) =
∂Y (X (tf))

∂X (tf )
. (7.11)

There is no error in initial condition because the specified initial condition is a known

entity. Hence, the expression δX (t0) = 0 holds true. Furthermore, substituting 7.10 and

7.11 into 7.9 produces

δY (X (tf )) =
∫ tf
t0 [Bc (t) δU (t)]dt, (7.12)

where,

Bc (t) = W (t)
∂f (X (t) , U (t))

∂U (t)
. (7.13)

Let the following performance index be considered for optimal control formulation:

J =
1

2

∫ tf

t0

[

(

U0 (t)− δU (t)
)T
R (t)

(

U0 (t)− δU (t)
)

]

dt (7.14)
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where, U0 (t) is the previous control history solution. The cost function in 7.14 needs to

be minimized subjected to the constraint in 7.12, where the positive definite weighting

matrix R (t) > 0 needs to be chosen judiciously by the control designer. The selection

of such a cost function is motivated by the fact that it is desired to find an l2-norm

minimizing control history, since (U0 (t)− δU (t)) is the updated control value at time t.

Equations (7.12) and (7.14) formulate an approximate constrained static optimization

problem. Using the static optimization theory [12], the augmented cost function is given

by

J̄ = 1
2

∫ tf
t0

[

(U0 (t)− δU (t))
T
R (t) (U0 (t)− δU (t))

]

dt+ λT
[

δY (tf )−
∫ tf
t0 [Bc (t) δU (t)] dt

]

(7.15)

where, λ is the Lagrange multiplier.

Consider next the first variation of 7.15 is given by the expression

δJ̄ = − ∫ tft0
[{

R (t) (U0 (t)− δU (t)) + (Bc (t))
T λ
}

δ (δU (t))
]

dt, (7.16)

from which it is clear that a minimum of J̄ occurs if the following expression holds true:

δU (t) = (R (t))−1 (Bc (t))
T λ+ U0 (t) (7.17)

Substituting 7.17 into 7.12 leads to

δY (tf) =
∫ tf
t0 Bc (t)

(

(R (t))−1 (Bc (t))
T λ+ U0 (t)

)

dt

= Aλλ+ bλ,
(7.18)

where,

Aλ
∆
=
[∫ tf

t0

[

Bc (t) (R (t))−1BT
c (t)

]

dt
]

, (7.19)

and

bλ
∆
=
[∫ tf

t0

[

Bc (t)U
0 (t)

]

dt
]

. (7.20)

Assuming that Aλ is a non-singular matrix, the following expression is obtained from



Chapter 7. Generalized Model Predictive Static Programming (G-MPSP)96

7.18 as

λ = (Aλ)
−1 [δY (tf )− bλ] , (7.21)

substituting which into 7.17 produces

δU (t) = (R (t))−1 (Bc (t))
T
[

(Aλ)
−1 [δY (tf )− bλ]

]

+ U0 (t) . (7.22)

Hence, the updated control is given by

U (t) = U0 (t)− δU (t) = − (R (t))−1 (Bc (t))
T
[

(Aλ)
−1 [δY (tf )− bλ]

]

(7.23)

It is clear from 7.23 that the updated control history solution in 7.23 is a closed form

solution. In this approach, the idea is to convert the dynamic optimization problem into

a constrained static optimization problem and then to compute a closed form control

history update for a class of finite-horizon problems. Furthermore, the necessary error

coefficients in 7.13 are computed recursively using 7.11 and 7.10. Overall it leads to a

very fast computation of the control history update, and hence, is a computationally

very efficient technique.

At this point, we would like to point out that the process needs to be repeated in

an iterative manner. Concepts such as output convergence to terminate the algorithm

and iteration unfolding [29] (where the control history is updated only a finite number of

times in a particular time step) can also be incorporated to enhance the computational

efficiency further (at the cost of sub-optimality of the solution).

We observe the following points related to the proposed G-MPSP:

1. In this G-MPSP formulation, the discretization of the system dynamics is not

required, which is required for the MPSP.

2. In this G-MPSP, any higher-order of the integration technique (e.g. forth-order

Runge-Kutta scheme) can be used for computing recursively the sensitivity matri-

ces (see (7.10)).



Chapter 7. Generalized Model Predictive Static Programming (G-MPSP)97

3. In this G-MPSP, it can be observed from 7.12 that the error in output at final

time tf defined by δY (X(tf)) given in 7.12 is derived using the first order terms of

the corresponding Taylor’s series expansion of the continuous time optimal control

formulation. While, in the MPSP, the error in output at final time step k = N

defined by ∆YN given in 6.4 and finally in 6.9 is derived using the first order

terms of the corresponding Taylor’s series expansion on the discretized version of

the dynamics 7.1 which amounts to two approximations, namely, one given by a

numerical discretization method (e.g. Euler’s discretization scheme) and the second

given by Taylor’s series expansion. Thus, the G-MPSP formulation needs only one

approximation due to its continuous time formulation.

7.1 G-MPSP Implementation Algorithm

The G-MPSP technique is an iterative algorithm which starts from a guess history and

continues until the desired accuracy in the terminal error of the output Y (tf ) is achieved.

The following algorithmic steps are performed in every guidance cycle once the dynamics

and the guess history are defined:

1. Initialize the previous control history U0(t) as the guess control history with some

guess such that the guess trajectories are not very far from the desired trajectories.

2. Define the present state as t = t0 and the desired state as t = tf .

3. Propagate the system dynamics given by 7.1 using U0(t) until to get the final state

of the system dynamics X(tf) and compute output Y (tf ). Required output Y ∗(tf)

is known. Therefore, δY (tf) can also be computed.

4. If either element of δY (tf) is more than the desired limit, then go to next step.

If not, stop. Use this converged solution for guidance which will be used as the

guidance command. This step represents the end of prediction mode.
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5. Compute the update matrixW (t) at each time step t using a numerical integration

scheme (e.g. either the forward Euler or any other more accurate method such as

the forth order Runge-Kutta (RK4)) using 7.10 and the final value 7.11.

6. Use the matrix W (t) to compute the matrix Bc(t) using 7.13.

7. Once Bc(t) is computed, Aλ and bλ can be computed using 7.19 and (7.20) respec-

tively.

8. Compute δU(t) and new control U(t) using equation (7.22) and (7.23) respectively.

Prepare for the next iteration by assigning U0(t) = U(t) and go to step 3. This

step represents the end of correction mode.

7.2 Results and Discussions

G-MPSP is generalized form of MPSP formulation which eliminates the necessity of using

discretized form of system equation. Similar problem formulation as in MPSP (Refer

section: 6.1) is used for G-MPSP solution. The problem objective is that deputy satellite

states should track the desired relative orbit state with minimum terminal error that is

X → Xd (in G-MPSP formulation frame work, δY(tf) → 0) and minimization of control

effort. A finite time SDRE solution presented in the section 5.2 with SDC1 system model

is used as comparative method for G-MPSP results. Similar to MPSP simulation infinite

time LQR solution is used as initial guess history for G-MPSP algorithm.

Simulation results for satellite formation reconfiguration problem with J2 perturba-

tion model is presented in this section. The initial and desired orbital parameters for the

deputy satellite and orbital parameters of the chief satellite are presented in the Table

7.1 and 7.2 respectively.

The Figure 7.1 gives the detail of formation reconfiguration trajectory. The deputy

satellite is initially in the relative orbit with ρ = 10km, the satellite is commanded to

move into a closer formation separation of ρ = 2.5km, the solid black line and dotted
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Table 7.1: Deputy Satellite Initial condition for G-MPSP solution

Orbital Initial Value Final Value
Parameters

ρ(km) 10km 2.5km
θ(deg) 450 600

a(km) 0 0
b(km) 0 0

m (slope) 1 1.5
n(slope) 0 0

Table 7.2: Chief Satellite Orbital Parameters, (G-MPSP)

Orbital Parameters Value
Semi-major axis 10000km

Eccentricity e = 0.1
Orbit Inclination 60

Argument of Perigee 0
Longitude of ascending node 0

Initial True Anomaly 10

black line in Figure 7.1 shows the reconfiguration trajectory of the deputy satellite com-

puted using G-MPSP and SDRE technique respectively. Figure 7.2 shows the control

history for guess control (LQR), G-MPSP updated control history for final iteration and

SDRE control respectively. The position error and velocity error achieved by G-MPSP

is significantly lesser than the initial guess control LQR state errors and SDRE state

error. The position and velocity error history plot are given in Figure 7.3, 7.4 and 7.5,

7.6. Table 7.3 gives the details of the terminal error comparison of three method LQR,

SDRE and G-MPSP. The iteration is stopped once the terminal state errors are within

the tolerance limit of ρe < 1%
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Figure 7.1: Satellite Orbit transfer trajectory plot,for guess LQR, G-MPSP and SDRE
for Circular chief satellite orbit

Table 7.3: LQR, G-MPSP and SDRE STATE ERROR (ρfinal = 2.5km with J2 pertur-
bation)(Position errors are in “km“ and velocity in “km

sec
“)

Error LQR SDRE G-MPSP
in States

x 8.321 0.01204 0.0035
ẋ 0.003919 -1.129e-06 -1.326e-06
y -0.6062 0.00318 -0.0002024
ẏ 0.003616 -4.74e-06 1.289e-06
z -0.299 0.006446 -0.00428
ż -9.95e-05 -4.6e-06 8e-06
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Figure 7.2: Control History for Guess control LQR and subsequent Updated G-MPSP
controls and SDRE solution with J2 perturbation
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Figure 7.3: Position Error for Initial Guess solution LQR and SDRE with J2 perturbation
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ẏerr,LQR
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Figure 7.6: Velocity Error for G-MPSP final iteration with J2 perturbation (Iteration
No. 10)

7.3 Summary and Conclusions

In this chapter theoretical details of G-MPSP method is presented. The problem of

satellite formation reconfiguration using G-MPSP suboptimal control is considered the

problem formulation is similar to MPSP method. Simulation results pertaining to sce-

nario of the reconfiguration where the chief and deputy satellite are brought into close

formation from a larger base-line length separation is experimented. The results of the

simulation are presented and it can be inferred that like MPSP method G-MPSP algo-

rithm achieves the reconfiguration with very minimum terminal state errors. G-MPSP

method has advantage over MPSP with no requirement of writing the system dynam-

ics in discrete form. It is concluded that like MPSP method G-MPSP is successful in

synthesizing the control for formation flying of satellites under perturbing effects of J2

gravitational forces, and yet achieve fine tracking of the desired orbit. In light of these

results MPSP and G-MPSP forms the most suited control logics which can be imple-

mented in rendezvous mission where meeting close tolerance in formation is the key to

success. In the next chapter a Robust control logic for SFF problem is presented.
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Robust Satellite Formation Flying

The need for nonlinear controller has become a necessity, since present day missions

demanding higher inter satellite separation and eccentric chief satellite orbits. In such

cases linear controller fail to meet the mission objective to transfer or maintain the deputy

satellite in the desired orbit. Most common controller used in small satellite mission

owing to their limited computation capability is LQR. LQR controller are not suitable

for mission involving eccentric orbits, higher formation distance and external disturbance

such as J2 perturbation. The novelty of this work is neural network augmented LQR

controller, where the neural network approximates the nonlinearity of the plant (due

to eccentric chief satellite orbit and large baseline separation) and also the exogenous

disturbance terms due gravitational perturbation of the oblate earth (J2 perturbation).

A control term is computed taking into consideration the approximated disturbance

terms, which along with the LQR control adds up to form the total control term which

is applied to meet the desired formation mission objective. The key benefit of the idea is

the small satellite can continue to implement LQR controller, complectly neglecting the

nonlinear plant and J2 perturbation model but augmenting with the proposed neural

network structures ensures that it acts as a robust nonlinear optimal controller.

One set of networks, called as NN1, is used for driving the LQR controller towards

the optimal control for the nonlinear system. The other set of networks, called as NN2, is

used to capture the unmodeled dynamics (including slowly-varying external disturbance

104
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terms), thereby improving the plant model and helping theNN1 in the process. Both sets

of neural networks are trained online using ‘closed form expressions’ and do not require

any iterative process. This technique is subsequently applied to the challenging problem

of satellite formation flying. Simulation studies show that the presented control synthesis

approach is able to ensure close formation flying catering for large initial separation,

high eccentricity orbits, uncertain semi-major axis of chief satellite and J2 gravitational

effects, which is usually considered as an exogenous perturbation.

8.1 Generic Problem Formulation

This section gives the generic problem formulation for class of problem of the form,

Ẋ = f(X) +BU+ d′(X)

where d′(X) denotes the disturbance external to the system. We can re-write the above

equation as

Ẋ = AX+BU+ d(X) (8.1)

where, d(X) = (f(X)−AX+ d′(X)).

Here d(X) ∈ ℜn is the total uncertainty term in the system. The control synthesis to

system of the form 8.1 is explained in following section (Refer 8.2). Aim of the controller

is to minimize the state deviation with minimum control effort, cost function considered

for this purpose is as follows.

J =
1

2

∞
∫

0

(

(X−Xd)
TQ(X−Xd) +UTRU

)

dt (8.2)

where, Xd is state vector for desired final orbit.



Chapter 8. Robust Satellite Formation Flying 106

8.2 Control Synthesis Structure

In this section the methodology used for online optimization of LQR controller is

described. The collective uncertainty due to omitted algebraic terms in linearization

process and external disturbance is written in terms of a lumped up term which is

denoted as un-modeled dynamics in the rest of the chapter. SFF falls to class of problem

where control U is not associated with system state X, i.e. B is constant matrix. Hence

it is assumed that the unknown function is dependent on state alone and is not a function

of the control.

8.2.1 Basic Philosophy

This section explains the philosophy behind the working of online optimization method

of LQR controller. There are a total of two neural networks along with the LQR controller

involved in the method.

1. LQR controller: LQR controller operates on the linear plant model. For input of

state Xk the LQR controller block gives the co-state value λ1,k+1

2. NN1: These networks approximate the additional costate required based on the

information given by the online training algorithm. The networks used are Radial

Basis Function Neural Networks (RBFNN).

3. NN2: These networks approximate the un-modeled dynamics which is crucial for

online training and the weights are used for computation of the partial derivative

of the un-modeled dynamics with respect to X . They use the channel wise error

information in the state for training. These are single layer networks with basis as

the terms in plant dynamics, details in 8.3.

The net costate for kth time step is given by

λk = λ1,k + λ2,k (8.3)
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where, λ1,k is the output from LQR and λ2,k is the output of NN1 (RBF network). The

control is evaluated using λk through optimal control equation.

8.2.2 LQR Controller

The LQR operates on linearized plant model given as follows,

Ẋ = AX+BU (8.4)

where, system matrices A and B are given in chapter 4 Cost function considered for

LQR solution is given in 8.2. Co-state is evaluated using λ = P(X − Xd) where P is

Ricatti coefficient obtained from solution of Ricatti equation 8.5

PA+ATP +Q− PBR−1BTP= 0 (8.5)

Optimal control U is evaluated using U = −R−1BTP(X − Xd) (Refer [12]). P is

constant matrix evaluated off-line and stored as gain value to be used online.

8.2.3 NN1 network synthesis and weight update rule

NN1 is a Radial basis function network consisting of input layer, output layer and

single hidden or intermediate layer. Gaussian function is selected as the basis for the

network. The response of RBF NN1 network is given as λ2,k+1 = W T
c φc(Xk) where Wc

are weights and φc(Xk) is basis function (Gaussian function). Weight update rule for

NN1 network in derived from the error cost function minimization. A cost function of

form

JNN1 =
1

2

(

W ∗T
c φc(Xk)−W T

c φc(Xk)
)T (

W ∗T
c φc(Xk)−W T

c φc(Xk)
)

(8.6)

+
1

2
(Wc −Wp)

TR1 (Wc −Wp) (8.7)

is formed. The termWp is the stored weight from previous iteration. TermW ∗T
c φc(Xk) =

λt2,k+1 are target values for NN1 network. Differentiating the above equation with respect
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to Wc and equating to zero we obtain the expression for weight update rule for NN1

network.

Wc =

(

W ∗T
c φc(Xk)φ

T
c (Xk) +W T

p R1

)

(φT
c (Xk)φc(Xk) +R1I)

(8.8)

R1 is the weight on error Wc −Wp and I is identity matrix of size (φT
c (Xk)φc(Xk))

8.2.4 NN2 Network synthesis and weight update rule

NN2 neural network is designed to capture the un-modeled dynamics of the plant, and

help NN1 network to come up with the extra co-state term needed addition to LQR

co-state value. Control evaluated from total value of the co-state caters to the perturbed

system model.

The actual plant model can be written as follows.

Ẋ = AX+BU+ d(X), X(0) = X0 (8.9)

Here d(X) ∈ ℜn is the un-modeled dynamics term. A Virtual plant whose states are Xa

is created and the dynamics of the virtual plant is given as

Ẋa = AX+BU+ d̂(X) +Kτ (X−Xa) (8.10)

The d̂(X) is an approximation of the actual function d(X) and Kτ is a Hurwitz matrix

which contains the desired time constants, it is desired that virtual plant should track

the actual plant. Error term can be defined as

E = X−Xa (8.11)

The error dynamics can be obtained by differentiating the above equation with time and

substituting 8.9 and 8.10

Ė = Ẋ− Ẋa
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Ė = d(X)− d̂(X)−KτE (8.12)

Error is decomposed into individual channels as ei = xi − xai . The ith channel error

dynamics is given as

ėi = ẋi − ẋai , i = 1, 2, . . . , n

ėi = di(X)− d̂i(X)− kτiei (8.13)

Single layer neural network with nonlinear basis functions is chosen to approximates the

un-modeled dynamics di(X) in the ith channel.

d̂i(X) = Ŵi

T
Φi(X), Wi ∈ ℜp (8.14)

where, Ŵi are the weights and Φi(X) are the basis. Lets consider there exists an ideal

approximator for the unknown function which approximates di(X) with an ideal approx-

imation error ǫi for the chosen basis Φi(X).

di(X) = Wi
TΦi(X) + ǫi (8.15)

The weights Wi are the ideal weights which are unknown. Channel wise error dynamics

can be written as

ėi = Wi
TΦi(X) + ǫi − Ŵi

T
Φi(X)− kτiei (8.16)

The error in weights of the ith approximating network is defined as

W̃i = Wi − Ŵi (8.17)

˙̃Wi = − ˙̂
Wi, Wi = constant (8.18)
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Aim is that weights of the approximating networks Ŵi should approach the ideal weights

Wi asymptotically, i.e.,

W̃i → 0 as t→ ∞

The un-modeled information is stored in terms of the weights of the approximating

networks. A Lyapunov approach is discussed in the next subsection for updating Ŵi

online.

8.2.5 Lyapunov Analysis and Weight Update Rule

The choice of Lyapunov function candidate is a important part of any Lyapunov

analysis [32]. There are three quantities whose asymptotic stability are to be guaranteed,

1. ei, the i
th channel error

2. W̃i, the error in ith network weights

3.
[

∂di(X)
∂X

− ∂d̂i(X)
∂X

]

, the error in ith unknown function partial derivative

The positive definite Lyapunov function candidate is

Vi(ei, W̃i) = βi
e2i
2
+
W̃i

T W̃i

2γi
+

[

∂di(X)

∂X
− ∂d̂i(X)

∂X

]T

×Θi

2

[

∂di(X)

∂X
− ∂d̂i(X)

∂X

]

(8.19)

where, βi, γi Θi are positive definite quantities.

Vi(ei, W̃i) = βi
e2i
2
+
W̃i

T W̃i

2γi
+ W̃i

T

[

∂Φi

∂X

]

Θi

2

[

∂Φi

∂X

]T

W̃i (8.20)

(8.21)
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The partial derivatives of the Lyapunov function are

∂Vi
∂ei

= βiei ;
∂Vi

∂W̃i

=
W̃i

γi
+

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T

W̃i (8.22)

Time derivative of Lyapunov function can be written as follows

V̇i = βieiėi −
W̃ T

i
˙̂
Wi

γi
− W̃i

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T
˙̂
Wi (8.23)

Substituting the error dynamics from 8.16 in above equation

V̇i = βiei{W̃ T
i Φi(X) + ǫi − kτiei} −

W̃ T
i

˙̂
Wi

γi

−W̃i

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T
˙̂
Wi

V̇i = βiei W̃
T
i Φi(X) + βieiǫi − βikτie

2
i −

W̃ T
i

˙̂
Wi

γi

−W̃i

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T
˙̂
Wi (8.24)

Collecting the coefficients of W̃ and equating the coefficient of W̃ T
i to zero following

expression is obtained





Ip
γi

+

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T




˙̂
Wi = βieiΦi(X)

where Ip is the identity matrix of dimension p. Inverting the coefficient of
˙̂
Wi lead to the

weight update rule in continuous time.

˙̂
Wi = βiei





Ip
γi

+

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T




−1

Φi(X) (8.25)

The matrix
[

[

∂Φi

∂X

]

Θi

[

∂Φi

∂X

]T
]

is singular for n < p. But the matrix is always positive

definite, so adding Ip
γi

will make the matrix nonsingular ∀(n, p) ∈ N . The left over terms
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Figure 8.1: Neural Network Scheme used to train network

from Lyapunov derivative V̇i equation are

V̇i = βieiǫi − kτiβie
2
i (8.26)

For stable system V̇i < 0 [32], which leads to a condition

|ei| >
|ǫi|
kτi

(8.27)

The above conditions means that if the absolute error in the ith channel exceeds the

value in RHS then the Lyapunov function becomes negative definite and positive definite

otherwise. Therefore, if the network weights are updated based of the rule given in (8.25),

then the identification happens as long as absolute error is greater than certain value.

By increasing kτi error bound can be theoretically reduced.
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8.2.6 LQR and Online training

1. LQR block and NN1 are excited with the current state Xk to obtain co-states

λ1,k+1 and λ2,k+1 respectively. The LQR controller operates twice within LQR

block to calculate λ1,k+1

2. NN2 trained with the error ei channel wise

3. The Virtual state equation in 8.10 is propagated with Xk and Uk to obtain Xa
k+1,

where d̂(X) in given by NN2

4. LQR and NN1 are again excited with the previously obtained state Xa
k+1 to obtain

λ1,k+2 and λ2,k+2 respectively. λk+2 is computed using 8.3

5. The costate equation is propagated backward with Xa
k+1, λk+2 using 8.29 to obtain

λtk+1

6. λt2,k+1 is computed as the difference of λtk+1 and λ1,k+1 which is the target value for

the training of NN2

8.3 Results and Discussions

The Extra co-state term in addition to LQR is evaluated from the back propagation of

the co-state equation assuming the full knowledge of the approximated disturbance term

(from NN2 network which maps the actual disturbance term). The sum of the costate

values from LQR and back propagation of co-state equation is used in the optimal control

equation to come up with the modified controller to make the deputy satellite track the

desired final orbit.

The Hamiltonian for evaluation of the co-state equation is as follows.

Hopt =
1

2

(

XTQX+UTQU
)

+ λT (AX+BU+ d(X)) (8.28)
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co-state equation is as follows

λ̇ = −∂Hopt

∂X
(8.29)

For the problem presented in this paper six such co-state derivatives are to be evaluated

i.e.
[

λ̇1 λ̇2 λ̇3 λ̇4 λ̇5 λ̇6

]

For approximating the disturbance term,(Refer section

8.2) a judicious selection of the basis function is done as follows. Considering the term

µ
γ
and expanding using the definition of γ and simplifying the expression can be written

as follows.
µ
γ
= µ

r3c

(

[

1−
(

− 2
rc
x− x2+y2+z2

r2c

)]−
3

2

)

Defining

ψ=
(

− 2
rc
x− x2+y2+z2

r2c

)

(8.30)

Power series up to fourth power is considered as the basis function Φi(Xact) = (ψ +

ψ2 + ψ3 + ψ4)x1 and so on for other disturbance terms. Trigonometric basis function is

considered for J2 perturbation.

The objective of the problem statement is to form the formation or to reconfigure

the formation flying of satellites to the desired orbit. Mathematically we can put the

problem objectives as follows, main objective is to minimize the terminal state errors

i.e.
[

x1 x3 x5

]T

→
[

x∗1 x∗3 x∗5

]T

at t = tf . However, since the velocity com-

ponents should also match with the desired orbital parameters, one can also impose
[

x2 x4 x6

]T

→
[

x∗2 x∗4 x∗6

]T

at t = tf , where
[

x∗2 x∗4 x∗6

]T

are the corre-

sponding desired orbital velocity parameters at the position
[

x∗1 x∗3 x∗5

]T

. Initial and

final relative orbital satellite of the deputy satellite is given in the Table 8.1 In this

exercise, the chief satellite orbit is considered as 10, 000km semi-major axis and zero

eccentricity circular orbit for LQR control evaluation. The actual values of chief satellite

orbit eccentricity and semi-major axis is considered as 0.5 and 11114.51658km respec-

tively, which amounts to 50% error in measured eccentricity and 10% error in semi-major

axis compared to data accounted for control synthesis using baseline controller(LQR).

Figure 8.2 illustrates the performance of three neural network used to approximate the

nonlinearity of the plant and J2 perturbation disturbance term. Solid line denotes the
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Table 8.1: Deputy Satellite Initial condition for online Optimized LQR solution

Orbital Initial Value Final Value
Parameters

ρ(km) 0.5km 5km
θ(deg) 450 600

a(km) 0 0
b(km) 0 0

m (slope) 1 1.5
n(slope) 0 0

Actual disturbance and dotted line signifies the neural network approximation of the

corresponding disturbance term. Figure 8.3 gives the trajectory plot for reconfiguration

of the formation.Figure 8.3 shows the The initial orbit, commanded orbit and satellite

trajectory for given formation flying mission. The Figure 8.3 includes the plot for , Ac-

tual plant (with Actual disturbance) with Actual Controller and approximate plant and

actual Controller and SDRE solution reconfiguration trajectory. Figure 8.4 gives the

details of the control in all three axis for nominal controller (LQR) and actual controller

(LQR + NN).

In the simulation a online optimized LQR controller is compared with at SDRE

controller. SDRE controller considered for comparison is assumed to operate on the

plant with following information

• The complete SDC model of plant and J2 perturbation model is considered in sys-

tem matrices used for computing feedback gain using infinite time SDRE technique.

• No uncertainty in eccentricity and semi-major axis of chief satellite, thats is actual

values of 11114.51658km and 0.5 for semi-major axis and eccentricity respectively

is considered in plant and J2 model.

Where as the base-line controller LQR considered for online optimization using neural

networks

• Operates on linear plant with circular chief satellite orbit condition e = 0 and chief

satellite orbit radius vector of 10000km
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• No external perturbation like J2 gravitational effect.

SDRE controller is used to demonstrate the capability of online optimized LQR con-

troller. LQR+NN controller actually in effect behaves as a nonlinear controller and the

terminal accuracies achieved over tracking a commanded final orbit are quite close to a

controller which operates on the nonlinear model of plant with no uncertainty in plant

model and prior information of disturbance in the system.

Figure 8.5, 8.6, 8.7 and 8.8 gives the plot of position error and velocity error vs time.

The Figure 8.5 gives the details of state error for nominal controller applied to actual

plant, 8.6 presents the plot of state error of the actual plant model operated with online

optimized LQR controller and similarly 8.7 presents the details for online optimized

LQR controller implemented with approximate plant model. We can see the terminal

state errors are quite close and hence can infer that nonlinear behavior of plant and J2

perturbation are mapped very accurately. Figure 8.8 shows the plots of position error and

velocity error for SDRE controller + Actual plant. The terminal accuracies of all three

cases that is Actual plant + actual controller, approximate plant + actual controller and

actual plant + SDRE controller are presented in Table. The neural network training

weight for disturbance capturing are shown in the Figure 8.9

Table 8.2: LQR,SDRE and MPSP state error(Eccentric chief satellite orbit solution,
Final ρ = 5 km). (Position errors are in “km“ and velocity in “km

sec
“)

Error LQR LQR + NN LQR + NN SDRE

in States Actual Plant Actual Plant Approx Plant Actual Plant
x -49.51 0.1544 0.1543 0.04326
ẋ -0.04335 5.158e-05 5.16e-05 1.56e-05
y 5.665 0.007096 0.006627 0.02603
ẏ 0.0445 -0.00047 -0.000468 -1.95e-05
z -44.1 -0.047 -0.047 0.02704
ż -0.03031 -9.702e-05 -9.693e-05 3.97e-05
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ẋerr,nom,act
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Ẋ
d
)
(K

m
/
s)
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(Ẋ

−
Ẋ
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8.4 Summary and Conclusions

This chapter concentrates on synthesis of robust control using LQR as baseline controller.

LQR controller is augmented with an extra control to compensate for the un-modeled

dynamics, using an online optimized neural network algorithm to map the disturbances

and uncertainties. This methodology has been simulated and results have been shown for

a spacecraft formation flying problem. The possible application area could be small satel-

lite mission which suffers with limited computation capabilities. Implementing proposed

online neural network optimized LQR controller simulates the behavior of a nonlinear

controller achieving mission objective with minimum terminal error in case of uncertainty

and external disturbance. A comparison with SDRE controller is done to exhibit the

capability of the LQR + NN controller to mimic the characteristics and performance of

a nonlinear controller.



Chapter 9

Conclusion

The main aim of this research is primarily to develop and experiment advanced algo-

rithms for formation flying of small satellites based on various emerging philosophies of

efficient solution of nonlinear optimal control problems. In this connection, the objec-

tive is to develop highly computationally efficient guidance algorithms based on various

emerging techniques on optimal control theory, which can be computed in real-time with

limited processing capability. In this thesis optimal control techniques namely LQR,

Infinite time and Finite-time SDRE, MPSP, G-MPSP are studied and experimented for

formation flying problems. As part of this work, the concept of Robust optimal control

’dynamic re-optimization’ is also experimented to make the design potentially robust to

un-modeled dynamics and slowly-varying external disturbances.

The biggest challenge for deputy satellites in formation flying mission, rendezvous

mission is to remain in the commanded orbit once injected into final orbit. The transition

of the reconfiguration trajectory of the deputy satellite should gradually attain the value

of the desired orbit with minimum terminal errors. In case of large errors in attaining

the position and/or velocity of the desired orbit the satellite veers of the trajectory hence

necessitating the need for repeated corrective control action. The controller experimented

are of the state feedback in nature. The stated control technique compute the control

action proportional to the state error and compute the control to be applied continuously

till the desired orbit is attained. The advantage of optimal controllers are that they take

122
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into consideration the magnitude of the error to be corrected and minimize the total

control effort required for orbit transfer.

In chapter 3 it is shown that for circular chief satellite orbit and for small base-line

length formation, the linear Hill’s equation are very good approximation of nonlinear

CW equations. It is demonstrated that for small orbit reconfiguration, LQR method

performs significantly in par with nonlinear controllers and are simpler to implement on

board. LQR method experimented in this thesis also forms the guess control for MPSP

and G-MPSP techniques used in further chapters.

As the formation mission are considered with large relative separations that is as ρ

becomes larger and/or larger chief satellite eccentricity is considered, the LQR control

is no more sufficient to address the increasing nonlinear behavior of the plant. A sub-

optimal control technique namely State Dependent Ricatti Equation(SDRE) solution is

experimented in both finite time and infinite time domain. SDRE control is character-

ized to be a linear looking controller with nonlinear equation of motion written in state

dependent coefficient(SDC) form. SDRE controller are not unique since the solution

depends on the designer to choose the way plant can be rewritten in SDC form. Two

SDC models are discussed in the thesis, performance of the both controller using dif-

ferent SDC model of plant is studied and compared to arrive at the SDC form of plant

which retains as much possible nonlinearity of the plant, yet render the plant dynamics

in linear looking form. The finite time SDRE solution is used as comparative method

for MPSP and G-MPSP results in further chapters.

Two suboptimal guidance logics are presented in this thesis for formation flying of

small satellites using the recently developed MPSP and G-MPSP techniques. The final

conditions have been put as hard conditions, because of which the solution turns out to be

highly accurate in ensuring the desired orbit for the deputy satellite is met. Comparison

with the finite time SDRE solution reveals that MPSP/G-MPSP guidance achieves the

objective with tighter tolerance and with lesser amount of control usage. It was also found

that the proposed MPSP/G-MPSP guidance is computationally efficient and hence can

possibly be used onboard the deputy satellites.
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Final part of this thesis presents a novel ”online optimized LQR controller” a ro-

bust controller for satellite formation flying mission in presence of uncertainties. The

controller presented in this chapter uses LQR as baseline controller with linear system

model. An optimization technique using online trained neural network is implemented

to approximate the disturbances and uncertainties to synthesize an extra control to com-

pensate for the un-modeled dynamics. This methodology has been simulated and results

have been shown for a spacecraft formation flying problem. The possible application

area could be small satellite mission which suffers with limited computation capabilities.

Implementing proposed online neural network optimized LQR controller simulates the

behavior of a nonlinear controller achieving mission objective with minimum terminal

error in case of uncertainty as well.

Finally it can be inferred that optimal control techniques experimented in purview

of this work, prove themselves to be good platform for satellite formation flying missions

involving distributed and multiple agents (deputy satellites). Nevertheless this thesis

did not exhaust the numerous nonlinear control techniques applicable to the problem of

formation flying. These nonlinear control techniques should be explored and evaluated

in comparison with optimal control techniques before anything to be concluded about

the superiority of the two.
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