
Adaptive Policy Transfer in Reinforcement Learning
Supplementary

Girish Joshi
Department of Aerospace Engineering & Department of Computer Science

University of Illinois Urbana Champaign
Urbana 61802

girishj2@illinois.edu.edu, girishc@illinois.edu

A Related work

Deep Reinforcement Learning (D-RL) has recently enabled agents to learn policies for complex
robotic tasks in simulation [1, 2, 3, 4]. However, D-RL has been plagued by the curse of sample
complexity. Therefore, the capabilities demonstrated in the simulated environment are hard to
replicate in the real world. This learning inefficiency of D-RL has led to significant work in the
field of Transfer Learning (TL) [5]. A significant body of literature on transfer in RL is focused
on initialized RL in the target domain using learned source policy; known as jump-start/warm-start
methods [6, 7, 8]. Some examples of these transfer architectures include transfer between similar
tasks [9], transfer from human demonstrations [10] and transfer from simulation to real [11, 12, 13].
Efforts have also been made in exploring accelerated learning directly on real robots, through Guided
Policy Search (GPS) [14] and parallelizing the training across multiple agents using meta-learning
[15, 16, 17]. Sim-to-Real transfers have been widely adopted in the recent works and can be viewed
as a subset of same domain transfer problems. Daftry et al. [18] demonstrated the policy transfer
for control of aerial vehicles across different vehicle models and environments. Policy transfer
from simulation to real using an inverse dynamics model estimated interacting with the real robot is
presented by [19]. The agents trained to achieve robust policies across various environments through
learning over an adversarial loss is presented in [20].

B Derivation of Behavioral Adaptation KL Divergence Intrinsic Reward

(a)
(b)

Figure 1: (a) Target Trajectory under policy πθ and local trajectory deviation under source optimal
policy π∗ and source transition pS (b) One step Target and Source transition(simulated) starting from
state st. Transition likelihood pT (s′t+1|st, at) is the probability of landing in state s′t+1 starting from
state st and using action target at under target transition model.

Preprint. Under review.

The adaptation objective can be formalized as minimizing the average KL-divergence [21] between
source and target transition trajectories as follows,

η
KL

(πθ, π
∗) = DKL(pπθ (τ)‖qπ∗(τ)),

η
KL

(πθ, π
∗) =

∫
S,A

pπθ (τ) log

(
pπθ (τ)

qπ∗(τ)

)
dτ (1)

where τ = (s0, s1, s2, . . .) is the trajectory in the target domain under the policy πθ(.|s) defined as
collection states visited starting from state s0 ∼ ρ0 and making transitions under target transition
model pT (.|st, at).

In the above defined KL divergence term the random variable is the trajectory τ = (s0, s1, s2, . . .).
We explain the flow of the algorithm in Figure 1. The algorithm starts with some random state
s0 ∼ ρ0 and using source optimal policy πθ(.|s0) and target transition model pT (.|s0, πθ(s0)), make
a transition to state s1 (Red arrow, Figure-1a). The source simulator is now initialized to state s0

and using source optimal policy π∗(.|s0) we make optimal transition under source transition model
pS(.|s0, π

∗(s0)) to state s′1 (Blue arrow, this is a simulated step using source simulator Figure-1a).

The likelihood of landing in the reference state s′1(obtained from optimal source transition) is now
evaluated, under target transition model and target policy. We call this likelihood as trajectory
deviation likelihood. The trajectory deviation likelihood can be expressed as pT (s′1|s0, πθ(s0)). Note
that we obtain this likelihood by evaluation the target transition probability at state s′1. For the next
step of learning the source model is reinitialized to the target transitioned state s1 (dotted arrow in
Figure-1b and the process is repeated as above.

One step KL divergence between transition probabilities or one-step Intrinsic reward can be written
as

ζt = πθ(a0|s0)pT (s′1|s0, πθ(s0))

(
πθ(a0|s0)pT (s′1|s0, πθ(s0))

π∗a(a′0|s0)pS(s′1|s0, π∗(s0))

)
. (2)

Note that above expression is a proper definition of KL divergence where the random variable for two
probabilities pπθ (.) and qπ∗(.) is the trajectory τ = (s0, s1, s2, . . .). The KL divergence expression
also satisfies the absolute continuity condition owing to fact that the state space for source and target
are same.

Computing the KL divergence over the entire trajectory, we can derive the expression for total
behavioral adaptation intrinsic return as follows∫

τ

pπθ (τ) log

(
pπθ (τ)

qπ∗(τ)

)
dτ = E

st∼τ

(
log

(
ρ(s0)π(a0|s0)pT (s′1|s0, πθ(s0)) . . .

ρ(s0)π∗(a′0|s0)pS(s′1|s0, π∗(s0)) . . .

))
. (3)

C Total return gradient with respect to policy parameters

The total return which we aim to maximize in adapting the source policy to target is the mixture of
environmental rewards and Intrinsic KL divergence reward as follows,

η̄
KL,β

(πθ, π
∗) = E

st,at∼τ

(
pπθ (τ)

H∑
t=0

r′t

)
, (4)

Taking the expectation over policy and transition distribution we can write the above expression

η̄
KL,β

(πθ, π
∗) = E

st∼pT ,at∼πθ

(∞∑
t=0

γtr′t

)
= V πθ (s). (5)

Using the definition of the state-value function, the above objective function can be re-written as

η̄
KL,β

(πθ, π
∗) =

∑
a

(πθ(a|s)Qπθ (s, a)) . (6)

The adaptive policy update methods work by computing an estimator of the gradient of the return and
plugging it into a stochastic gradient ascent algorithm

π∗Tθ = arg max
πθ∈Π

PZn(η̄
KL,β

). (7)

2

θ = θ + αĝ,

where α is the learning rate and ĝ is the empirical estimate of the gradient of the total discounted
return η

KL
.

Taking the derivative of the total return term

∇θ(η̄KL,β) = ∇θV πθ (s) = ∇θ

(∑
a

(πθ(a|s)Qπθ (s, a))

)
,

∇θV πθ (s) =
∑
a

∇θπθ(a|s)Qπθ (s, a) +
∑
a

πθ(a|s)∇θQπθ (s, a).

(8)

Using the following definition in above expression,

Qπθ (si, a) = pT (si+1, |si, a)(r + γV πθ (si+1)).

We can rewrite the gradient to total return over policy πθ as,

∇θV πθ (s0) =
∑
a

∇θπθ(a|s0)Qπθ (s0, a)

+
∑
s1

pT (s1, |s0, a)
∑
a

πθ(a|s0)∇θ(r0 + γV πθ (s1)).

(9)

As the reward rt is independent of θ, we can simplify the above expression and can be re-written as

∇θV πθ (s0) =
∑
a

∇θπθ(a|s0)Qπθ (s0, a)

+
∑
s1

γpT (s1, |s0, a)
∑
a

πθ(a|s0)∇θV πθ (s1).

(10)

As we can see the above expression has a recursive property involving term ∇θV πθ (s). Using the
following definition of a discounted state visitation distribution dπθ

dπθ (s0) = ρ(s0) + γ
∑
a

π(a|s0)
∑
s1

pT (s1|s0, a)

+γ2
∑
a

π(a|s1)
∑
s2

pT (s2|s1, a) . . . (11)

we can write the gradient of transfer objective as follows,

∇θ(ηKL,β) =
∑
s∈S

dπθ (s)
∑
a∈A
∇θπθ(a|s)Qπθ (s, a) (12)

Considering an off-policy RL update, where πθ− is used for collecting trajectories over which the
state-value function is estimated, we can rewrite the above gradient for offline update as follows,

Multiplying and dividing Eq-12 by πθ−(a|s) and πθ(a|s) we form a gradient estimate for offline
update,

=
∑
s∈S

dπθ− (s)
∑
a∈A

πθ−(a|s) πθ(a|s)
πθ−(a|s)

∇θπθ(a|s)
πθ(a|s)

Qπθ− (s, a) (13)

where the ratio
(
πθ(a|s)
πθ− (a|s)

)
is importance sampling term, and using the following identity the above

expression can be rewritten as

∇θπθ(a|s)
πθ(a|s)

= ∇θ log πθ(a|s)

= E
st∼d

π
θ− ,at∼πθ−

(
πθ(a|s)
πθ−(a|s)

Qπθ− (s, a)∇θ log πθ(a|s)
)
. (14)

3

D Theoretical bounds on sample complexity

Although there is some empirical evidence that transfer can improve performance in subsequent
reinforcement-learning tasks, there are not many theoretical guarantees in the literature. Since many
of the existing transfer algorithms approach the problem of transfer as a method of providing good
initialization to target task RL, we can expect the sample complexity of those algorithms to still
be a function of the cardinality of state-action pairs |N | = |S| × |A|. On the other hand, in a
supervised learning setting, the theoretical guarantees of the most algorithms have no dependency on
size (or dimensionality) of the input domain (which is analogous to |N | in RL). Having formulated
a policy transfer algorithm using labeled reference trajectories derived from optimal source policy,
we construct supervised learning like PAC property of the proposed method. For deriving, the lower
bound on the sample complexity of the proposed transfer problem, we consider only the adaptation
part of the learning i.e., the case when β = 1. This is because, in ATL, adaptive learning is akin
to supervised learning, since the source reference trajectories provide the target states given every
(st, at) pair.

Suppose we are given the learning problem specified with training set Zn = (Z1, . . . Zn) where each
Zi = ({si, ai})ni=0 are independently drawn trajectories according to some distribution P . Given the
data Zn we can compute the empirical return PZn(η̄

KL,β
) for every πθ ∈ Π, we will show that the

following holds:
‖PZn(η̄

KL,β
)− P (η̄

KL,β
)‖ ≤ ε. (15)

with probability at least 1− δ, for some very small δ s.t 0 ≤ δ ≤ 1. We can claim that the empirical
return for all πθ is a sufficiently accurate estimate of the true return function. Thus a reasonable
learning strategy is to find a πθ ∈ Π that would minimize empirical estimate of the objective

π∗Tθ = arg max
πθ∈Π,β

(
η̄
KL,β

)
, (16)

Theorem D.1 If the induced class LΠ has uniform convergence in empirical mean property then
empirical risk minimization is PAC.

For notation simplicity we drop the superscript T (for Target domain) and subscript θ (policy
parameters) in further analysis. Unless stated we will using following simplifications π̂∗ = π̂∗Tθ and
π∗ = π∗Tθ

Proof Fix ε, δ > 0 we will show that for sufficiently large n ≥ n(ε, δ)

Pn(P (η̄
KL,π̂∗)− P (η̄

KL,π∗) ≥ ε) ≤ δ (17)

Let π∗ ∈ Π be the minimizer of true return P (η̄
KL

), further adding and subtracting the terms
PZn(η̄

KL,π̂∗) and PZn(η̄
KL,π∗) we can write

P (η̄
KL,π̂∗)− P (η̄

KL,π∗) =

P (η̄
KL,π̂∗)− PZn(η̄

KL,π̂∗)

+PZn(η̄
KL,π̂∗)− PZn(η̄

KL,π∗)

+PZn(η̄
KL,π∗)− P (η̄

KL,π∗)

(18)

To simplify, the three terms in the above expression can be handled individually as follows,

1. P (η̄
KL,π̂∗)− PZn(η̄

KL,π̂∗)

2. PZn(η̄
KL,π̂∗)− PZn(η̄

KL,π∗)

3. PZn(η̄
KL,π∗)− P (η̄

KL,π∗)

Lets consider the term PZn(η̄
KL,π̂∗) − PZn(η̄

KL,π∗) in the above expression is always negative
semi-definite, since π̂∗ is a maximizer wrto PZn(η̄

KL
), hence PZn(η̄

KL,π̂∗) ≤ PZn(η̄
KL,π∗) always,

i.e
PZn(η̄

KL,π̂∗)− PZn(η̄
KL,π∗) ≤ 0

4

Next the 1st term can be bounded as

P (η̄
KL,π̂∗)− PZn(η̄

KL,π̂∗) ≤ sup
π∈Π

[PZn(η
KL

)− P (η̄
KL

)]

≤ sup
π∈Π
‖PZn(η̄

KL
)− P (η̄

KL
)‖

Similarly upper bound can be written for the 3rd term Therefore we can upper bound the above
expression as

P (η̄
KL,π̂∗)− P (η̄

KL,π∗) ≤ 2 sup
π∈Π
‖PZn(η̄

KL
)− P (η̄

KL
)‖

From Equation-(17) we have

sup
π∈Π
‖PZn(η̄

KL
)− P (η̄

KL
)‖ ≥ ε/2 (19)

Using McDiarmids inequality and union bound, we can state the probability of this event as

Pn(‖PZn(η̄
KL

)− P (η̄
KL

)‖ ≥ ε/2) ≤ 2|Π|e−
nε2

2C2 (20)

The finite difference bound

C =
1

1− γ
Equating the RHS of the expression to δ and solving for n we get

n(ε, δ) ≥ 2

ε2(1− γ)2
log

(
2|Π|
δ

)
(21)

for n ≥ n(ε, δ) the probability of receiving a bad sample is less than δ.

E ε-Optimality result under Adaptive Transfer-Learning

Consider MDP M∗ and M̂ which differ in their transition models. For the sake of analysis, let M∗
be the MDP with ideal transition model, such that target follows source transition p∗ precisely. Let p̂
be the transition model achieved using the estimated policy learned over data interacting with the
target model and the associated MDP be denoted as M̂ . We analyze the ε-optimality of return under
adapted source optimal policy through ATL.

Definition E.1 Given the value function V ∗ = V π
∗

and model M1 and M2, which only differ in the
corresponding transition models p1 and p2. Define ∀s, a ∈ S ×A

dV
∗

M1,M2
= sup
s,a∈S×A

∣∣∣∣ E
s′∼P1(s,a)

[V ∗(s′)]− E
s′∼P2(s,a)

[V ∗(s′)]

∣∣∣∣ .
Lemma E.2 Given M∗, M̂ and value function V π

∗

M∗ , V π
∗

M̂
the following bound holds∥∥∥V π∗M∗ − V π∗M̂ ∥∥∥

∞
≤ γε

(1−γ)2

where maxs,a ‖p̂(.|s, a)− p∗(.|s, a)‖ ≤ ε and p̂ and p∗ are transition of MDP M̂,M∗ respectively.

The proof of this lemma is based on the simulation lemma [22] (see Supplementary document).
Similar results for RL with imperfect models were reported by [23].

Lemma E.3 Given M∗, M̂ and value function V π
∗

M∗ , V π
∗

M̂
the following bound holds∥∥∥V π∗M∗ − V π∗M̂ ∥∥∥

∞
≤ γε

(1−γ)2

where maxs,a ‖p̂(.|s, a)− p∗(.|s, a)‖ ≤ ε and p̂ and p∗ are transition of MDP M̂,M∗ respectively.

5

Proof For any s ∈ S

|V π
∗

M̂
(s)− V π

∗

M∗(s)|∞

= |r(s, a) + γ
〈
p̂(s′|s, a), V π

∗

M̂
(s′)
〉

−r(s, a)− γ
〈
p∗(s′|s, a), V π

∗

M∗(s
′)
〉
|∞

Add and subtract the term γ
〈
p∗(s′|s, a), V π

∗

M̂
(s′)
〉

= |γ
〈
p̂(s′|s, a), V π

∗

M̂
(s′)
〉
− γ

〈
p∗(s′|s, a), V π

∗

M̂
(s′)
〉

+ γ
〈
p∗(s′|s, a), V π

∗

M̂
(s′)
〉
− γ

〈
p∗(s′|s, a), V π

∗

M∗(s
′)
〉
|∞

≤ γ|
〈
p̂(s′|s, a), V π

∗

M̂
(s′)
〉
−
〈
p∗(s′|s, a), V π

∗

M̂
(s′)
〉
|

+ γ|
〈
p∗(s′|s, a), V π

∗

M̂
(s′)
〉
− γ

〈
p∗(s′|s, a), V π

∗

M∗(s
′)
〉
|∞

≤ γ|p̂(s′|s, a)− p∗(s′|s, a)|∞|V π
∗

M̂
(s′)|∞

+γ|V π
∗

M̂
(s)− V π

∗

M∗(s)|∞

Using the definition of ε in above expression, we can write

|V π
∗

M̂
(s)− V π

∗

M∗(s)|∞ ≤ γε|V π
∗

M̂
(s′)|∞ + γ|V π

∗

M̂
(s)− V π

∗

M∗(s)|∞
Therefore

|V π
∗

M̂
(s)− V π

∗

M∗(s)|∞ ≤
γε|V π∗

M̂
(s′)|∞

1− γ
Now we solve for expression |V π∗

M̂
(s′)|∞. We know that this term is bounded as

|V π
∗

M̂
(s′)|∞ ≤

Rmax
1− γ

where Rmax = 1, therefore we can write the complete expression as

|V π
∗

M̂
(s)− V π

∗

M∗(s)|∞ ≤
γε

(1− γ)2

Env Property source Target %Change
Hopper Floor Friction 1.0 2.0 +100%

HalfCheetah gravity -9.81 -15 +52%
Total Mass 14 35 +150%

Back-Foot Damping 3.0 1.5 -100%
Floor Friction 0.4 0.1 -75%

Walker2d Density 1000 1500 +50%
Right-Foot Friction 0.9 0.45 -50%
Left-Foot Friction 1.9 1.0 -47.37%

Table 1: Transition Model and environment properties for Source and Target task and % change

F Learning the Mixing Coefficient β

A hierarchical update of the mixing coefficient β is carried out over n-test trajectories, collected using
the updated policy network πθ′(a|s). The mixing coefficient β is learnt by optimizing the return over
trajectory as follows,

β = argmax
β

(η̄KL,β(πθ′ , π
∗))

6

Hopper Walker2d HalfCheetah
State Space 12 18 17

Control Space 3 6 6
Number of layers 3 3 3
Layer Activations tanh tanh tanh

Total num. of network params 10530 28320 26250
Discount 0.995 0.995 0.995

Learning rate (α) 1.5×10−5 8.7×10−6 9×10−6

β initial Value 0.5 0.5 0.5
β-Learning rate (ᾱ) 0.1 0.1 0.1

Batch size 20 20 5
Policy Iter 3000 5000 1500

Table 2: Policy Network details and Network learning parameter details

where θ′ is parameter after the policy update step.

β = argmax
β

E
st,at∼τ

(
pπθ (τ)

∞∑
t=1

γtr′t

)
We can use gradient ascent to update parameter β in direction of optimizing the reward mixing as
follows,

β ← β + ᾱ∇β(η̄KL,β(πθ′ , π
∗)).

Using the definition of mixed reward as r′t = (1− β)rt − βζt, we can simplify the above gradient as,

β ← β + ᾱ E
st,at∼τ

(
pπθ (τ)

∞∑
t=1

γt∇β(r′t)

)

β ← β + ᾱ E
st,at∼τ

(∞∑
t=1

γt(rt − ζt)

)
.

We use stochastic gradient ascent to update the mixing coefficient β as follows

β ← β + ᾱĝβ , s.t 0 ≤ β ≤ 1.

where ᾱ is the learning rate and ĝβ = PZntest(∇β η̄KL,β) is the empirical estimate of the gradient of
the total return η̄

KL,β
(πθ′ , π

∗). The gradient estimate ĝβ over data (Zntest : {si, ai, a′i}Ti) is computed
as follows,

ĝβ =
1

N

N∑
i=1

(H∑
t=1

γt(rt − ζt)

)
whereH truncated trajectory length from experiments.

As we can see the gradient of objective with respect to mixing coefficient β is an average over
difference between environmental and intrinsic rewards. If rt − ζt ≥ 0 the update will move
parameter β towards favoring learning through exploration more than learning through adaptation
and visa versa.

As β update is a constrained optimization with constraint 0 ≤ β ≤ 1. We handle this constrained
optimization by modelling β as output of Sigmoidal network parameterized by parameters φ.

β = σ(φ)

And the constrained optimization can be equivalently written as optimizing w.r.to φ as follows

φ← φ+ ᾱĝβ∇φ(β), where β = σ(φ)

The reward mixing co-efficient β learned for HalfCheetah, Hopper and Walker2d envs is provided in
Figure-2. For all the experiments we start with β = 0.5 that is placing equal probability of learning
through adaptation and learning through exploration. As we can observe the reward mixing leans
towards learning through adaptation for HalfCheetah and Hopper envs. Whereas, as for Walker2d the
beta initially believes learning from exploration more, but quickly leans toward learning from source
policy and adaptation.

7

Figure 2: The Reward Mixing Co-efficient β for HalfCheetah, Hopper and Walker2d environment
learnt over trajectories collected interacting with envs.

References
[1] Xue Bin Peng, Glen Berseth, and Michiel Van de Panne. Terrain-adaptive locomotion skills

using deep reinforcement learning. ACM Transactions on Graphics (TOG), 35(4):81, 2016.

[2] Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel Van De Panne. Deeploco: Dy-
namic locomotion skills using hierarchical deep reinforcement learning. ACM Transactions on
Graphics (TOG), 36(4):41, 2017.

[3] Libin Liu and Jessica Hodgins. Learning to schedule control fragments for physics-based
characters using deep q-learning. ACM Transactions on Graphics (TOG), 36(3):29, 2017.

[4] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg Wayne, Yuval Tassa, Tom
Erez, Ziyu Wang, Ali Eslami, Martin Riedmiller, et al. Emergence of locomotion behaviours in
rich environments. arXiv preprint arXiv:1707.02286, 2017.

[5] Matthew E Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(Jul):1633–1685, 2009.

[6] Matthew E Taylor, Peter Stone, and Yaxin Liu. Value functions for rl-based behavior transfer:
A comparative study. In Proceedings of the National Conference on Artificial Intelligence,
volume 20, page 880. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press;
1999, 2005.

[7] Haitham B Ammar, Karl Tuyls, Matthew E Taylor, Kurt Driessens, and Gerhard Weiss. Re-
inforcement learning transfer via sparse coding. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems-Volume 1, pages 383–390. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, 2012.

[8] Haitham Bou Ammar, Eric Eaton, Paul Ruvolo, and Matthew E Taylor. Unsupervised cross-
domain transfer in policy gradient reinforcement learning via manifold alignment. In Proc. of
AAAI, 2015.

[9] Bikramjit Banerjee and Peter Stone. General game learning using knowledge transfer. In IJCAI,
pages 672–677, 2007.

[10] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In Intelligent Robots and
Systems, 2006 IEEE/RSJ International Conference on, pages 2219–2225. IEEE, 2006.

[11] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Sim-to-real
transfer of robotic control with dynamics randomization. arXiv preprint arXiv:1710.06537,
2017.

[12] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and
structured prediction to no-regret online learning. In Proceedings of the fourteenth international
conference on artificial intelligence and statistics, pages 627–635, 2011.

8

[13] Mengyuan Yan, Iuri Frosio, Stephen Tyree, and Jan Kautz. Sim-to-real transfer of accurate grasp-
ing with eye-in-hand observations and continuous control. arXiv preprint arXiv:1712.03303,
2017.

[14] Sergey Levine, Nolan Wagener, and Pieter Abbeel. Learning contact-rich manipulation skills
with guided policy search. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pages 156–163. IEEE, 2015.

[15] Sergey Levine, Peter Pastor, Alex Krizhevsky, and Deirdre Quillen. Learning hand-eye coor-
dination for robotic grasping with large-scale data collection. In International Symposium on
Experimental Robotics, pages 173–184. Springer, 2016.

[16] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network
dynamics for model-based deep reinforcement learning with model-free fine-tuning. In 2018
IEEE International Conference on Robotics and Automation (ICRA), pages 7559–7566. IEEE,
2018.

[17] Henry Zhu, Abhishek Gupta, Aravind Rajeswaran, Sergey Levine, and Vikash Kumar. Dexterous
manipulation with deep reinforcement learning: Efficient, general, and low-cost. arXiv preprint
arXiv:1810.06045, 2018.

[18] Shreyansh Daftry, J Andrew Bagnell, and Martial Hebert. Learning transferable policies for
monocular reactive mav control. In International Symposium on Experimental Robotics, pages
3–11. Springer, 2016.

[19] Paul Christiano, Zain Shah, Igor Mordatch, Jonas Schneider, Trevor Blackwell, Joshua Tobin,
Pieter Abbeel, and Wojciech Zaremba. Transfer from simulation to real world through learning
deep inverse dynamics model. arXiv preprint arXiv:1610.03518, 2016.

[20] Markus Wulfmeier, Ingmar Posner, and Pieter Abbeel. Mutual alignment transfer learning.
arXiv preprint arXiv:1707.07907, 2017.

[21] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[22] Michael Kearns and Satinder Singh. Near-optimal reinforcement learning in polynomial time.
Machine Learning, 49(2-3):209–232, 2002.

[23] Nan Jiang. Pac reinforcement learning with an imperfect model. In Proc. of AAAI, 2018.

9

	Related work
	Derivation of Behavioral Adaptation KL Divergence Intrinsic Reward
	Total return gradient with respect to policy parameters
	Theoretical bounds on sample complexity
	-Optimality result under Adaptive Transfer-Learning
	Learning the Mixing Coefficient

